akaros/kern/drivers/net/bnx2x/bnx2x_init_ops.h
<<
>>
Prefs
   1/* bnx2x_init_ops.h: Broadcom Everest network driver.
   2 *               Static functions needed during the initialization.
   3 *               This file is "included" in bnx2x_main.c.
   4 *
   5 * Copyright (c) 2007-2013 Broadcom Corporation
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation.
  10 *
  11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  12 * Written by: Vladislav Zolotarov
  13 */
  14
  15#pragma once
  16
  17
  18#ifndef BP_ILT
  19#define BP_ILT(bp)      NULL
  20#endif
  21
  22#ifndef BP_FUNC
  23#define BP_FUNC(bp)     0
  24#endif
  25
  26#ifndef BP_PORT
  27#define BP_PORT(bp)     0
  28#endif
  29
  30#ifndef BNX2X_ILT_FREE
  31#define BNX2X_ILT_FREE(x, y, sz)
  32#endif
  33
  34#ifndef BNX2X_ILT_ZALLOC
  35#define BNX2X_ILT_ZALLOC(x, y, sz)
  36#endif
  37
  38#ifndef ILOG2
  39#define ILOG2(x)        x
  40#endif
  41
  42static int bnx2x_gunzip(struct bnx2x *bp, const uint8_t *zbuf, int len);
  43static void bnx2x_reg_wr_ind(struct bnx2x *bp, uint32_t addr, uint32_t val);
  44static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
  45                                      dma_addr_t phys_addr, uint32_t addr,
  46                                      uint32_t len);
  47
  48static void bnx2x_init_str_wr(struct bnx2x *bp, uint32_t addr,
  49                              const uint32_t *data, uint32_t len)
  50{
  51        uint32_t i;
  52
  53        for (i = 0; i < len; i++)
  54                REG_WR(bp, addr + i*4, data[i]);
  55}
  56
  57static void bnx2x_init_ind_wr(struct bnx2x *bp, uint32_t addr,
  58                              const uint32_t *data, uint32_t len)
  59{
  60        uint32_t i;
  61
  62        for (i = 0; i < len; i++)
  63                bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
  64}
  65
  66static void bnx2x_write_big_buf(struct bnx2x *bp, uint32_t addr,
  67                                uint32_t len,
  68                                uint8_t wb)
  69{
  70        if (bp->dmae_ready)
  71                bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
  72
  73        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
  74        else if (wb && CHIP_IS_E1(bp))
  75                bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
  76
  77        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
  78        else
  79                bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
  80}
  81
  82static void bnx2x_init_fill(struct bnx2x *bp, uint32_t addr, int fill,
  83                            uint32_t len, uint8_t wb)
  84{
  85        uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
  86        uint32_t buf_len32 = buf_len/4;
  87        uint32_t i;
  88
  89        memset(GUNZIP_BUF(bp), (uint8_t)fill, buf_len);
  90
  91        for (i = 0; i < len; i += buf_len32) {
  92                uint32_t cur_len = MIN(buf_len32, len - i);
  93
  94                bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
  95        }
  96}
  97
  98static void bnx2x_write_big_buf_wb(struct bnx2x *bp, uint32_t addr,
  99                                   uint32_t len)
 100{
 101        if (bp->dmae_ready)
 102                bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
 103
 104        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 105        else if (CHIP_IS_E1(bp))
 106                bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
 107
 108        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 109        else
 110                bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
 111}
 112
 113static void bnx2x_init_wr_64(struct bnx2x *bp, uint32_t addr,
 114                             const uint32_t *data, uint32_t len64)
 115{
 116        uint32_t buf_len32 = FW_BUF_SIZE/4;
 117        uint32_t len = len64*2;
 118        uint64_t data64 = 0;
 119        uint32_t i;
 120
 121        /* 64 bit value is in a blob: first low DWORD, then high DWORD */
 122        data64 = HILO_U64((*(data + 1)), (*data));
 123
 124        len64 = MIN((uint32_t)(FW_BUF_SIZE / 8), len64);
 125        for (i = 0; i < len64; i++) {
 126                uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(bp))) + i;
 127
 128                *pdata = data64;
 129        }
 130
 131        for (i = 0; i < len; i += buf_len32) {
 132                uint32_t cur_len = MIN(buf_len32, len - i);
 133
 134                bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
 135        }
 136}
 137
 138/*********************************************************
 139   There are different blobs for each PRAM section.
 140   In addition, each blob write operation is divided into a few operations
 141   in order to decrease the amount of phys. contiguous buffer needed.
 142   Thus, when we select a blob the address may be with some offset
 143   from the beginning of PRAM section.
 144   The same holds for the INT_TABLE sections.
 145**********************************************************/
 146#define IF_IS_INT_TABLE_ADDR(base, addr) \
 147                        if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
 148
 149#define IF_IS_PRAM_ADDR(base, addr) \
 150                        if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
 151
 152static const uint8_t *bnx2x_sel_blob(struct bnx2x *bp, uint32_t addr,
 153                                const uint8_t *data)
 154{
 155        IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
 156                data = INIT_TSEM_INT_TABLE_DATA(bp);
 157        else
 158                IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
 159                        data = INIT_CSEM_INT_TABLE_DATA(bp);
 160        else
 161                IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
 162                        data = INIT_USEM_INT_TABLE_DATA(bp);
 163        else
 164                IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
 165                        data = INIT_XSEM_INT_TABLE_DATA(bp);
 166        else
 167                IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
 168                        data = INIT_TSEM_PRAM_DATA(bp);
 169        else
 170                IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
 171                        data = INIT_CSEM_PRAM_DATA(bp);
 172        else
 173                IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
 174                        data = INIT_USEM_PRAM_DATA(bp);
 175        else
 176                IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
 177                        data = INIT_XSEM_PRAM_DATA(bp);
 178
 179        return data;
 180}
 181
 182static void bnx2x_init_wr_wb(struct bnx2x *bp, uint32_t addr,
 183                             const uint32_t *data, uint32_t len)
 184{
 185        if (bp->dmae_ready)
 186                VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
 187
 188        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 189        else if (CHIP_IS_E1(bp))
 190                bnx2x_init_ind_wr(bp, addr, data, len);
 191
 192        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 193        else
 194                bnx2x_init_str_wr(bp, addr, data, len);
 195}
 196
 197static void bnx2x_wr_64(struct bnx2x *bp, uint32_t reg, uint32_t val_lo,
 198                        uint32_t val_hi)
 199{
 200        uint32_t wb_write[2];
 201
 202        wb_write[0] = val_lo;
 203        wb_write[1] = val_hi;
 204        REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
 205}
 206static void bnx2x_init_wr_zp(struct bnx2x *bp, uint32_t addr, uint32_t len,
 207                             uint32_t blob_off)
 208{
 209        const uint8_t *data = NULL;
 210        int rc;
 211        uint32_t i;
 212
 213        data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
 214
 215        rc = bnx2x_gunzip(bp, data, len);
 216        if (rc)
 217                return;
 218
 219        /* gunzip_outlen is in dwords */
 220        len = GUNZIP_OUTLEN(bp);
 221        for (i = 0; i < len; i++)
 222                ((uint32_t *)GUNZIP_BUF(bp))[i] = (__force uint32_t)
 223                                cpu_to_le32(((uint32_t *)GUNZIP_BUF(bp))[i]);
 224
 225        bnx2x_write_big_buf_wb(bp, addr, len);
 226}
 227
 228static void bnx2x_init_block(struct bnx2x *bp, uint32_t block,
 229                             uint32_t stage)
 230{
 231        uint16_t op_start =
 232                INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 233                                                     STAGE_START)];
 234        uint16_t op_end =
 235                INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 236                                                     STAGE_END)];
 237        const union init_op *op;
 238        uint32_t op_idx, op_type, addr, len;
 239        const uint32_t *data, *data_base;
 240
 241        /* If empty block */
 242        if (op_start == op_end)
 243                return;
 244
 245        data_base = INIT_DATA(bp);
 246
 247        for (op_idx = op_start; op_idx < op_end; op_idx++) {
 248
 249                op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
 250                /* Get generic data */
 251                op_type = op->raw.op;
 252                addr = op->raw.offset;
 253                /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
 254                 * OP_WR64 (we assume that op_arr_write and op_write have the
 255                 * same structure).
 256                 */
 257                len = op->arr_wr.data_len;
 258                data = data_base + op->arr_wr.data_off;
 259
 260                switch (op_type) {
 261                case OP_RD:
 262                        REG_RD(bp, addr);
 263                        break;
 264                case OP_WR:
 265                        REG_WR(bp, addr, op->write.val);
 266                        break;
 267                case OP_SW:
 268                        bnx2x_init_str_wr(bp, addr, data, len);
 269                        break;
 270                case OP_WB:
 271                        bnx2x_init_wr_wb(bp, addr, data, len);
 272                        break;
 273                case OP_ZR:
 274                        bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
 275                        break;
 276                case OP_WB_ZR:
 277                        bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
 278                        break;
 279                case OP_ZP:
 280                        bnx2x_init_wr_zp(bp, addr, len,
 281                                         op->arr_wr.data_off);
 282                        break;
 283                case OP_WR_64:
 284                        bnx2x_init_wr_64(bp, addr, data, len);
 285                        break;
 286                case OP_IF_MODE_AND:
 287                        /* if any of the flags doesn't match, skip the
 288                         * conditional block.
 289                         */
 290                        if ((INIT_MODE_FLAGS(bp) &
 291                                op->if_mode.mode_bit_map) !=
 292                                op->if_mode.mode_bit_map)
 293                                op_idx += op->if_mode.cmd_offset;
 294                        break;
 295                case OP_IF_MODE_OR:
 296                        /* if all the flags don't match, skip the conditional
 297                         * block.
 298                         */
 299                        if ((INIT_MODE_FLAGS(bp) &
 300                                op->if_mode.mode_bit_map) == 0)
 301                                op_idx += op->if_mode.cmd_offset;
 302                        break;
 303                default:
 304                        /* Should never get here! */
 305
 306                        break;
 307                }
 308        }
 309}
 310
 311
 312/****************************************************************************
 313* PXP Arbiter
 314****************************************************************************/
 315/*
 316 * This code configures the PCI read/write arbiter
 317 * which implements a weighted round robin
 318 * between the virtual queues in the chip.
 319 *
 320 * The values were derived for each PCI max payload and max request size.
 321 * since max payload and max request size are only known at run time,
 322 * this is done as a separate init stage.
 323 */
 324
 325#define NUM_WR_Q                        13
 326#define NUM_RD_Q                        29
 327#define MAX_RD_ORD                      3
 328#define MAX_WR_ORD                      2
 329
 330/* configuration for one arbiter queue */
 331struct arb_line {
 332        int l;
 333        int add;
 334        int ubound;
 335};
 336
 337/* derived configuration for each read queue for each max request size */
 338static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
 339/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 340        { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
 341        { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
 342        { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
 343        { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 344        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 345        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 346        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 347        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 348/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 349        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 350        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 351        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 352        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 353        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 354        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 355        { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
 356        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 357        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 358/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 359        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 360        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 361        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 362        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 363        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 364        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 365        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 366        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 367        { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
 368};
 369
 370/* derived configuration for each write queue for each max request size */
 371static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
 372/* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
 373        { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
 374        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 375        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 376        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 377        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 378        { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
 379        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 380        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 381/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
 382        { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
 383        { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
 384        { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
 385};
 386
 387/* register addresses for read queues */
 388static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
 389/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
 390                PXP2_REG_RQ_BW_RD_UBOUND0},
 391        {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 392                PXP2_REG_PSWRQ_BW_UB1},
 393        {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 394                PXP2_REG_PSWRQ_BW_UB2},
 395        {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 396                PXP2_REG_PSWRQ_BW_UB3},
 397        {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
 398                PXP2_REG_RQ_BW_RD_UBOUND4},
 399        {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
 400                PXP2_REG_RQ_BW_RD_UBOUND5},
 401        {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 402                PXP2_REG_PSWRQ_BW_UB6},
 403        {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 404                PXP2_REG_PSWRQ_BW_UB7},
 405        {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 406                PXP2_REG_PSWRQ_BW_UB8},
 407/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 408                PXP2_REG_PSWRQ_BW_UB9},
 409        {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 410                PXP2_REG_PSWRQ_BW_UB10},
 411        {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 412                PXP2_REG_PSWRQ_BW_UB11},
 413        {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
 414                PXP2_REG_RQ_BW_RD_UBOUND12},
 415        {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
 416                PXP2_REG_RQ_BW_RD_UBOUND13},
 417        {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
 418                PXP2_REG_RQ_BW_RD_UBOUND14},
 419        {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
 420                PXP2_REG_RQ_BW_RD_UBOUND15},
 421        {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
 422                PXP2_REG_RQ_BW_RD_UBOUND16},
 423        {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
 424                PXP2_REG_RQ_BW_RD_UBOUND17},
 425        {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
 426                PXP2_REG_RQ_BW_RD_UBOUND18},
 427/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
 428                PXP2_REG_RQ_BW_RD_UBOUND19},
 429        {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
 430                PXP2_REG_RQ_BW_RD_UBOUND20},
 431        {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
 432                PXP2_REG_RQ_BW_RD_UBOUND22},
 433        {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
 434                PXP2_REG_RQ_BW_RD_UBOUND23},
 435        {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
 436                PXP2_REG_RQ_BW_RD_UBOUND24},
 437        {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
 438                PXP2_REG_RQ_BW_RD_UBOUND25},
 439        {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
 440                PXP2_REG_RQ_BW_RD_UBOUND26},
 441        {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
 442                PXP2_REG_RQ_BW_RD_UBOUND27},
 443        {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 444                PXP2_REG_PSWRQ_BW_UB28}
 445};
 446
 447/* register addresses for write queues */
 448static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
 449/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 450                PXP2_REG_PSWRQ_BW_UB1},
 451        {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 452                PXP2_REG_PSWRQ_BW_UB2},
 453        {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 454                PXP2_REG_PSWRQ_BW_UB3},
 455        {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 456                PXP2_REG_PSWRQ_BW_UB6},
 457        {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 458                PXP2_REG_PSWRQ_BW_UB7},
 459        {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 460                PXP2_REG_PSWRQ_BW_UB8},
 461        {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 462                PXP2_REG_PSWRQ_BW_UB9},
 463        {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 464                PXP2_REG_PSWRQ_BW_UB10},
 465        {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 466                PXP2_REG_PSWRQ_BW_UB11},
 467/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 468                PXP2_REG_PSWRQ_BW_UB28},
 469        {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
 470                PXP2_REG_RQ_BW_WR_UBOUND29},
 471        {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
 472                PXP2_REG_RQ_BW_WR_UBOUND30}
 473};
 474
 475static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
 476                               int w_order)
 477{
 478        uint32_t val, i;
 479
 480        if (r_order > MAX_RD_ORD) {
 481                DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
 482                   r_order, MAX_RD_ORD);
 483                r_order = MAX_RD_ORD;
 484        }
 485        if (w_order > MAX_WR_ORD) {
 486                DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
 487                   w_order, MAX_WR_ORD);
 488                w_order = MAX_WR_ORD;
 489        }
 490        if (CHIP_REV_IS_FPGA(bp)) {
 491                DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
 492                w_order = 0;
 493        }
 494        DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
 495
 496        for (i = 0; i < NUM_RD_Q-1; i++) {
 497                REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
 498                REG_WR(bp, read_arb_addr[i].add,
 499                       read_arb_data[i][r_order].add);
 500                REG_WR(bp, read_arb_addr[i].ubound,
 501                       read_arb_data[i][r_order].ubound);
 502        }
 503
 504        for (i = 0; i < NUM_WR_Q-1; i++) {
 505                if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
 506                    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
 507
 508                        REG_WR(bp, write_arb_addr[i].l,
 509                               write_arb_data[i][w_order].l);
 510
 511                        REG_WR(bp, write_arb_addr[i].add,
 512                               write_arb_data[i][w_order].add);
 513
 514                        REG_WR(bp, write_arb_addr[i].ubound,
 515                               write_arb_data[i][w_order].ubound);
 516                } else {
 517
 518                        val = REG_RD(bp, write_arb_addr[i].l);
 519                        REG_WR(bp, write_arb_addr[i].l,
 520                               val | (write_arb_data[i][w_order].l << 10));
 521
 522                        val = REG_RD(bp, write_arb_addr[i].add);
 523                        REG_WR(bp, write_arb_addr[i].add,
 524                               val | (write_arb_data[i][w_order].add << 10));
 525
 526                        val = REG_RD(bp, write_arb_addr[i].ubound);
 527                        REG_WR(bp, write_arb_addr[i].ubound,
 528                               val | (write_arb_data[i][w_order].ubound << 7));
 529                }
 530        }
 531
 532        val =  write_arb_data[NUM_WR_Q-1][w_order].add;
 533        val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
 534        val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
 535        REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
 536
 537        val =  read_arb_data[NUM_RD_Q-1][r_order].add;
 538        val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
 539        val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
 540        REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
 541
 542        REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
 543        REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
 544        REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
 545        REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
 546
 547        if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
 548                REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
 549
 550        if (CHIP_IS_E3(bp))
 551                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
 552        else if (CHIP_IS_E2(bp))
 553                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
 554        else
 555                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
 556
 557        if (!CHIP_IS_E1(bp)) {
 558                /*    MPS      w_order     optimal TH      presently TH
 559                 *    128         0             0               2
 560                 *    256         1             1               3
 561                 *    >=512       2             2               3
 562                 */
 563                /* DMAE is special */
 564                if (!CHIP_IS_E1H(bp)) {
 565                        /* E2 can use optimal TH */
 566                        val = w_order;
 567                        REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
 568                } else {
 569                        val = ((w_order == 0) ? 2 : 3);
 570                        REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
 571                }
 572
 573                REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
 574                REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
 575                REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
 576                REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
 577                REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
 578                REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
 579                REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
 580                REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
 581                REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
 582                REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
 583        }
 584
 585        /* Validate number of tags suppoted by device */
 586#define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
 587        val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
 588        val &= 0xFF;
 589        if (val <= 0x20)
 590                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
 591}
 592
 593/****************************************************************************
 594* ILT management
 595****************************************************************************/
 596/*
 597 * This codes hides the low level HW interaction for ILT management and
 598 * configuration. The API consists of a shadow ILT table which is set by the
 599 * driver and a set of routines to use it to configure the HW.
 600 *
 601 */
 602
 603/* ILT HW init operations */
 604
 605/* ILT memory management operations */
 606#define ILT_MEMOP_ALLOC         0
 607#define ILT_MEMOP_FREE          1
 608
 609/* the phys address is shifted right 12 bits and has an added
 610 * 1=valid bit added to the 53rd bit
 611 * then since this is a wide register(TM)
 612 * we split it into two 32 bit writes
 613 */
 614#define ILT_ADDR1(x)            ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
 615#define ILT_ADDR2(x)            ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
 616#define ILT_RANGE(f, l)         (((l) << 10) | f)
 617
 618static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
 619                                 struct ilt_line *line, uint32_t size,
 620                                 uint8_t memop)
 621{
 622        if (memop == ILT_MEMOP_FREE) {
 623                BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
 624                return 0;
 625        }
 626        BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
 627        if (!line->page)
 628                return -1;
 629        line->size = size;
 630        return 0;
 631}
 632
 633
 634static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
 635                                   uint8_t memop)
 636{
 637        int i, rc;
 638        struct bnx2x_ilt *ilt = BP_ILT(bp);
 639        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 640
 641        if (!ilt || !ilt->lines)
 642                return -1;
 643
 644        if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
 645                return 0;
 646
 647        for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
 648                rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
 649                                           ilt_cli->page_size, memop);
 650        }
 651        return rc;
 652}
 653
 654static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, uint8_t memop)
 655{
 656        int rc = 0;
 657
 658        if (CONFIGURE_NIC_MODE(bp))
 659                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 660        if (!rc)
 661                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
 662
 663        return rc;
 664}
 665
 666static int bnx2x_ilt_mem_op(struct bnx2x *bp, uint8_t memop)
 667{
 668        int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
 669        if (!rc)
 670                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
 671        if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 672                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 673
 674        return rc;
 675}
 676
 677static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
 678                              dma_addr_t page_mapping)
 679{
 680        uint32_t reg;
 681
 682        if (CHIP_IS_E1(bp))
 683                reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
 684        else
 685                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
 686
 687        bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
 688}
 689
 690static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
 691                                   struct bnx2x_ilt *ilt, int idx,
 692                                   uint8_t initop)
 693{
 694        dma_addr_t      null_mapping;
 695        int abs_idx = ilt->start_line + idx;
 696
 697
 698        switch (initop) {
 699        case INITOP_INIT:
 700                /* set in the init-value array */
 701        case INITOP_SET:
 702                bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
 703                break;
 704        case INITOP_CLEAR:
 705                null_mapping = 0;
 706                bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
 707                break;
 708        }
 709}
 710
 711static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
 712                                      struct ilt_client_info *ilt_cli,
 713                                      uint32_t ilt_start, uint8_t initop)
 714{
 715        uint32_t start_reg = 0;
 716        uint32_t end_reg = 0;
 717
 718        /* The boundary is either SET or INIT,
 719           CLEAR => SET and for now SET ~~ INIT */
 720
 721        /* find the appropriate regs */
 722        if (CHIP_IS_E1(bp)) {
 723                switch (ilt_cli->client_num) {
 724                case ILT_CLIENT_CDU:
 725                        start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
 726                        break;
 727                case ILT_CLIENT_QM:
 728                        start_reg = PXP2_REG_PSWRQ_QM0_L2P;
 729                        break;
 730                case ILT_CLIENT_SRC:
 731                        start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
 732                        break;
 733                case ILT_CLIENT_TM:
 734                        start_reg = PXP2_REG_PSWRQ_TM0_L2P;
 735                        break;
 736                }
 737                REG_WR(bp, start_reg + BP_FUNC(bp)*4,
 738                       ILT_RANGE((ilt_start + ilt_cli->start),
 739                                 (ilt_start + ilt_cli->end)));
 740        } else {
 741                switch (ilt_cli->client_num) {
 742                case ILT_CLIENT_CDU:
 743                        start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
 744                        end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
 745                        break;
 746                case ILT_CLIENT_QM:
 747                        start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
 748                        end_reg = PXP2_REG_RQ_QM_LAST_ILT;
 749                        break;
 750                case ILT_CLIENT_SRC:
 751                        start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
 752                        end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
 753                        break;
 754                case ILT_CLIENT_TM:
 755                        start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
 756                        end_reg = PXP2_REG_RQ_TM_LAST_ILT;
 757                        break;
 758                }
 759                REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
 760                REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
 761        }
 762}
 763
 764static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
 765                                         struct bnx2x_ilt *ilt,
 766                                         struct ilt_client_info *ilt_cli,
 767                                         uint8_t initop)
 768{
 769        int i;
 770
 771        if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 772                return;
 773
 774        for (i = ilt_cli->start; i <= ilt_cli->end; i++)
 775                bnx2x_ilt_line_init_op(bp, ilt, i, initop);
 776
 777        /* init/clear the ILT boundries */
 778        bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
 779}
 780
 781static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
 782                                     struct ilt_client_info *ilt_cli,
 783                                     uint8_t initop)
 784{
 785        struct bnx2x_ilt *ilt = BP_ILT(bp);
 786
 787        bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
 788}
 789
 790static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
 791                                        int cli_num, uint8_t initop)
 792{
 793        struct bnx2x_ilt *ilt = BP_ILT(bp);
 794        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 795
 796        bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
 797}
 798
 799static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, uint8_t initop)
 800{
 801        if (CONFIGURE_NIC_MODE(bp))
 802                bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 803        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
 804}
 805
 806static void bnx2x_ilt_init_op(struct bnx2x *bp, uint8_t initop)
 807{
 808        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
 809        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
 810        if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 811                bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 812}
 813
 814static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
 815                                      uint32_t psz_reg, uint8_t initop)
 816{
 817        struct bnx2x_ilt *ilt = BP_ILT(bp);
 818        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 819
 820        if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 821                return;
 822
 823        switch (initop) {
 824        case INITOP_INIT:
 825                /* set in the init-value array */
 826        case INITOP_SET:
 827                REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
 828                break;
 829        case INITOP_CLEAR:
 830                break;
 831        }
 832}
 833
 834/*
 835 * called during init common stage, ilt clients should be initialized
 836 * prioir to calling this function
 837 */
 838static void bnx2x_ilt_init_page_size(struct bnx2x *bp, uint8_t initop)
 839{
 840        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
 841                                  PXP2_REG_RQ_CDU_P_SIZE, initop);
 842        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
 843                                  PXP2_REG_RQ_QM_P_SIZE, initop);
 844        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
 845                                  PXP2_REG_RQ_SRC_P_SIZE, initop);
 846        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
 847                                  PXP2_REG_RQ_TM_P_SIZE, initop);
 848}
 849
 850/****************************************************************************
 851* QM initializations
 852****************************************************************************/
 853#define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
 854#define QM_INIT_MIN_CID_COUNT   31
 855#define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
 856
 857/* called during init port stage */
 858static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
 859                                    uint8_t initop)
 860{
 861        int port = BP_PORT(bp);
 862
 863        if (QM_INIT(qm_cid_count)) {
 864                switch (initop) {
 865                case INITOP_INIT:
 866                        /* set in the init-value array */
 867                case INITOP_SET:
 868                        REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
 869                               qm_cid_count/16 - 1);
 870                        break;
 871                case INITOP_CLEAR:
 872                        break;
 873                }
 874        }
 875}
 876
 877static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
 878                                   uint32_t base_reg, uint32_t reg)
 879{
 880        int i;
 881        uint32_t wb_data[2] = {0, 0};
 882        for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
 883                REG_WR(bp, base_reg + i*4,
 884                       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
 885                bnx2x_init_wr_wb(bp, reg + i*8,  wb_data, 2);
 886        }
 887}
 888
 889/* called during init common stage */
 890static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
 891                                    uint8_t initop)
 892{
 893        if (!QM_INIT(qm_cid_count))
 894                return;
 895
 896        switch (initop) {
 897        case INITOP_INIT:
 898                /* set in the init-value array */
 899        case INITOP_SET:
 900                bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 901                                       QM_REG_BASEADDR, QM_REG_PTRTBL);
 902                if (CHIP_IS_E1H(bp))
 903                        bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 904                                               QM_REG_BASEADDR_EXT_A,
 905                                               QM_REG_PTRTBL_EXT_A);
 906                break;
 907        case INITOP_CLEAR:
 908                break;
 909        }
 910}
 911
 912/****************************************************************************
 913* SRC initializations
 914****************************************************************************/
 915/* called during init func stage */
 916static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
 917                              dma_addr_t t2_mapping, int src_cid_count)
 918{
 919        int i;
 920        int port = BP_PORT(bp);
 921
 922        /* Initialize T2 */
 923        for (i = 0; i < src_cid_count-1; i++)
 924                t2[i].next = (uint64_t)(t2_mapping +
 925                             (i+1)*sizeof(struct src_ent));
 926
 927        /* tell the searcher where the T2 table is */
 928        REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
 929
 930        bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
 931                    U64_LO(t2_mapping), U64_HI(t2_mapping));
 932
 933        bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
 934                    U64_LO((uint64_t)t2_mapping +
 935                           (src_cid_count-1) * sizeof(struct src_ent)),
 936                    U64_HI((uint64_t)t2_mapping +
 937                           (src_cid_count-1) * sizeof(struct src_ent)));
 938}
 939