-/*
- * Copyright (c) 2009 The Regents of the University of California
+/* Copyright (c) 2009, 2010 The Regents of the University of California
* Barret Rhoden <brho@cs.berkeley.edu>
* See LICENSE for details.
*
- */
+ * Virtual memory management functions. Creation, modification, etc, of virtual
+ * memory regions (VMRs) as well as mmap(), mprotect(), and munmap().
+ *
+ * In general, error checking / bounds checks are done in the main function
+ * (e.g. mmap()), and the work is done in a do_ function (e.g. do_mmap()).
+ * Versions of those functions that are called when the vmr lock is already held
+ * begin with __ (e.g. __do_munmap()).
+ *
+ * Note that if we were called from kern/src/syscall.c, we probably don't have
+ * an edible reference to p. */
+#include <frontend.h>
#include <ros/common.h>
-#include <ros/mman.h>
#include <pmap.h>
#include <mm.h>
#include <process.h>
#include <stdio.h>
+#include <syscall.h>
+#include <slab.h>
+#include <kmalloc.h>
+#include <vfs.h>
+#include <smp.h>
+
+struct kmem_cache *vmr_kcache;
+
+static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg);
+/* minor helper, will ease the file->chan transition */
+static struct page_map *file2pm(struct file *file)
+{
+ return file->f_mapping;
+}
+
+void vmr_init(void)
+{
+ vmr_kcache = kmem_cache_create("vm_regions", sizeof(struct vm_region),
+ __alignof__(struct dentry), 0, 0, 0);
+}
+
+/* For now, the caller will set the prot, flags, file, and offset. In the
+ * future, we may put those in here, to do clever things with merging vm_regions
+ * that are the same.
+ *
+ * TODO: take a look at solari's vmem alloc. And consider keeping these in a
+ * tree of some sort for easier lookups. */
+struct vm_region *create_vmr(struct proc *p, uintptr_t va, size_t len)
+{
+ struct vm_region *vmr = 0, *vm_i, *vm_next;
+ uintptr_t gap_end;
+
+ assert(!PGOFF(va));
+ assert(!PGOFF(len));
+ assert(va + len <= UMAPTOP);
+ /* Is there room before the first one: */
+ vm_i = TAILQ_FIRST(&p->vm_regions);
+ /* This works for now, but if all we have is BRK_END ones, we'll start
+ * growing backwards (TODO) */
+ if (!vm_i || (va + len <= vm_i->vm_base)) {
+ vmr = kmem_cache_alloc(vmr_kcache, 0);
+ if (!vmr)
+ panic("EOM!");
+ memset(vmr, 0, sizeof(struct vm_region));
+ vmr->vm_base = va;
+ TAILQ_INSERT_HEAD(&p->vm_regions, vmr, vm_link);
+ } else {
+ TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) {
+ vm_next = TAILQ_NEXT(vm_i, vm_link);
+ gap_end = vm_next ? vm_next->vm_base : UMAPTOP;
+ /* skip til we get past the 'hint' va */
+ if (va >= gap_end)
+ continue;
+ /* Find a gap that is big enough */
+ if (gap_end - vm_i->vm_end >= len) {
+ vmr = kmem_cache_alloc(vmr_kcache, 0);
+ if (!vmr)
+ panic("EOM!");
+ memset(vmr, 0, sizeof(struct vm_region));
+ /* if we can put it at va, let's do that. o/w, put it so it
+ * fits */
+ if ((gap_end >= va + len) && (va >= vm_i->vm_end))
+ vmr->vm_base = va;
+ else
+ vmr->vm_base = vm_i->vm_end;
+ TAILQ_INSERT_AFTER(&p->vm_regions, vm_i, vmr, vm_link);
+ break;
+ }
+ }
+ }
+ /* Finalize the creation, if we got one */
+ if (vmr) {
+ vmr->vm_proc = p;
+ vmr->vm_end = vmr->vm_base + len;
+ }
+ if (!vmr)
+ warn("Not making a VMR, wanted %p, + %p = %p", va, len, va + len);
+ return vmr;
+}
+
+/* Split a VMR at va, returning the new VMR. It is set up the same way, with
+ * file offsets fixed accordingly. 'va' is the beginning of the new one, and
+ * must be page aligned. */
+struct vm_region *split_vmr(struct vm_region *old_vmr, uintptr_t va)
+{
+ struct vm_region *new_vmr;
+
+ assert(!PGOFF(va));
+ if ((old_vmr->vm_base >= va) || (old_vmr->vm_end <= va))
+ return 0;
+ new_vmr = kmem_cache_alloc(vmr_kcache, 0);
+ TAILQ_INSERT_AFTER(&old_vmr->vm_proc->vm_regions, old_vmr, new_vmr,
+ vm_link);
+ new_vmr->vm_proc = old_vmr->vm_proc;
+ new_vmr->vm_base = va;
+ new_vmr->vm_end = old_vmr->vm_end;
+ old_vmr->vm_end = va;
+ new_vmr->vm_prot = old_vmr->vm_prot;
+ new_vmr->vm_flags = old_vmr->vm_flags;
+ if (old_vmr->vm_file) {
+ kref_get(&old_vmr->vm_file->f_kref, 1);
+ new_vmr->vm_file = old_vmr->vm_file;
+ new_vmr->vm_foff = old_vmr->vm_foff +
+ old_vmr->vm_end - old_vmr->vm_base;
+ pm_add_vmr(file2pm(old_vmr->vm_file), new_vmr);
+ } else {
+ new_vmr->vm_file = 0;
+ new_vmr->vm_foff = 0;
+ }
+ return new_vmr;
+}
+
+/* Merges two vm regions. For now, it will check to make sure they are the
+ * same. The second one will be destroyed. */
+int merge_vmr(struct vm_region *first, struct vm_region *second)
+{
+ assert(first->vm_proc == second->vm_proc);
+ if ((first->vm_end != second->vm_base) ||
+ (first->vm_prot != second->vm_prot) ||
+ (first->vm_flags != second->vm_flags) ||
+ (first->vm_file != second->vm_file))
+ return -1;
+ if ((first->vm_file) && (second->vm_foff != first->vm_foff +
+ first->vm_end - first->vm_base))
+ return -1;
+ first->vm_end = second->vm_end;
+ destroy_vmr(second);
+ return 0;
+}
+
+/* Attempts to merge vmr with adjacent VMRs, returning a ptr to be used for vmr.
+ * It could be the same struct vmr, or possibly another one (usually lower in
+ * the address space. */
+struct vm_region *merge_me(struct vm_region *vmr)
+{
+ struct vm_region *vmr_temp;
+ /* Merge will fail if it cannot do it. If it succeeds, the second VMR is
+ * destroyed, so we need to be a bit careful. */
+ vmr_temp = TAILQ_PREV(vmr, vmr_tailq, vm_link);
+ if (vmr_temp)
+ if (!merge_vmr(vmr_temp, vmr))
+ vmr = vmr_temp;
+ vmr_temp = TAILQ_NEXT(vmr, vm_link);
+ if (vmr_temp)
+ merge_vmr(vmr, vmr_temp);
+ return vmr;
+}
+
+/* Grows the vm region up to (and not including) va. Fails if another is in the
+ * way, etc. */
+int grow_vmr(struct vm_region *vmr, uintptr_t va)
+{
+ assert(!PGOFF(va));
+ struct vm_region *next = TAILQ_NEXT(vmr, vm_link);
+ if (next && next->vm_base < va)
+ return -1;
+ if (va <= vmr->vm_end)
+ return -1;
+ vmr->vm_end = va;
+ return 0;
+}
+
+/* Shrinks the vm region down to (and not including) va. Whoever calls this
+ * will need to sort out the page table entries. */
+int shrink_vmr(struct vm_region *vmr, uintptr_t va)
+{
+ assert(!PGOFF(va));
+ if ((va < vmr->vm_base) || (va > vmr->vm_end))
+ return -1;
+ vmr->vm_end = va;
+ return 0;
+}
+
+/* Called by the unmapper, just cleans up. Whoever calls this will need to sort
+ * out the page table entries. */
+void destroy_vmr(struct vm_region *vmr)
+{
+ if (vmr->vm_file) {
+ pm_remove_vmr(file2pm(vmr->vm_file), vmr);
+ kref_put(&vmr->vm_file->f_kref);
+ }
+ TAILQ_REMOVE(&vmr->vm_proc->vm_regions, vmr, vm_link);
+ kmem_cache_free(vmr_kcache, vmr);
+}
+
+/* Given a va and a proc (later an mm, possibly), returns the owning vmr, or 0
+ * if there is none. */
+struct vm_region *find_vmr(struct proc *p, uintptr_t va)
+{
+ struct vm_region *vmr;
+ /* ugly linear seach */
+ TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) {
+ if ((vmr->vm_base <= va) && (vmr->vm_end > va))
+ return vmr;
+ }
+ return 0;
+}
+
+/* Finds the first vmr after va (including the one holding va), or 0 if there is
+ * none. */
+struct vm_region *find_first_vmr(struct proc *p, uintptr_t va)
+{
+ struct vm_region *vmr;
+ /* ugly linear seach */
+ TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) {
+ if ((vmr->vm_base <= va) && (vmr->vm_end > va))
+ return vmr;
+ if (vmr->vm_base > va)
+ return vmr;
+ }
+ return 0;
+}
+
+/* Makes sure that no VMRs cross either the start or end of the given region
+ * [va, va + len), splitting any VMRs that are on the endpoints. */
+void isolate_vmrs(struct proc *p, uintptr_t va, size_t len)
+{
+ struct vm_region *vmr;
+ if ((vmr = find_vmr(p, va)))
+ split_vmr(vmr, va);
+ /* TODO: don't want to do another find (linear search) */
+ if ((vmr = find_vmr(p, va + len)))
+ split_vmr(vmr, va + len);
+}
+
+void unmap_and_destroy_vmrs(struct proc *p)
+{
+ struct vm_region *vmr_i, *vmr_temp;
+ /* this only gets called from __proc_free, so there should be no sync
+ * concerns. still, better safe than sorry. */
+ spin_lock(&p->vmr_lock);
+ p->vmr_history++;
+ spin_lock(&p->pte_lock);
+ TAILQ_FOREACH(vmr_i, &p->vm_regions, vm_link) {
+ /* note this CB sets the PTE = 0, regardless of if it was P or not */
+ env_user_mem_walk(p, (void*)vmr_i->vm_base,
+ vmr_i->vm_end - vmr_i->vm_base, __vmr_free_pgs, 0);
+ }
+ spin_unlock(&p->pte_lock);
+ /* need the safe style, since destroy_vmr modifies the list. also, we want
+ * to do this outside the pte lock, since it grabs the pm lock. */
+ TAILQ_FOREACH_SAFE(vmr_i, &p->vm_regions, vm_link, vmr_temp)
+ destroy_vmr(vmr_i);
+ spin_unlock(&p->vmr_lock);
+}
-/* mmap2() semantics on the offset (num pages, not bytes) */
+/* Helper: copies the contents of pages from p to new p. For pages that aren't
+ * present, once we support swapping or CoW, we can do something more
+ * intelligent. 0 on success, -ERROR on failure. Can't handle jumbos. */
+static int copy_pages(struct proc *p, struct proc *new_p, uintptr_t va_start,
+ uintptr_t va_end)
+{
+ /* Sanity checks. If these fail, we had a screwed up VMR.
+ * Check for: alignment, wraparound, or userspace addresses */
+ if ((PGOFF(va_start)) ||
+ (PGOFF(va_end)) ||
+ (va_end < va_start) || /* now, start > UMAPTOP -> end > UMAPTOP */
+ (va_end > UMAPTOP)) {
+ warn("VMR mapping is probably screwed up (%p - %p)", va_start,
+ va_end);
+ return -EINVAL;
+ }
+ int copy_page(struct proc *p, pte_t pte, void *va, void *arg) {
+ struct proc *new_p = (struct proc*)arg;
+ struct page *pp;
+ if (pte_is_unmapped(pte))
+ return 0;
+ /* pages could be !P, but right now that's only for file backed VMRs
+ * undergoing page removal, which isn't the caller of copy_pages. */
+ if (pte_is_mapped(pte)) {
+ /* TODO: check for jumbos */
+ if (upage_alloc(new_p, &pp, 0))
+ return -ENOMEM;
+ if (page_insert(new_p->env_pgdir, pp, va, pte_get_settings(pte))) {
+ page_decref(pp);
+ return -ENOMEM;
+ }
+ memcpy(page2kva(pp), KADDR(pte_get_paddr(pte)), PGSIZE);
+ page_decref(pp);
+ } else if (pte_is_paged_out(pte)) {
+ /* TODO: (SWAP) will need to either make a copy or CoW/refcnt the
+ * backend store. For now, this PTE will be the same as the
+ * original PTE */
+ panic("Swapping not supported!");
+ } else {
+ panic("Weird PTE %p in %s!", pte_print(pte), __FUNCTION__);
+ }
+ return 0;
+ }
+ return env_user_mem_walk(p, (void*)va_start, va_end - va_start, ©_page,
+ new_p);
+}
+
+/* This will make new_p have the same VMRs as p, and it will make sure all
+ * physical pages are copied over, with the exception of MAP_SHARED files.
+ * This is used by fork().
+ *
+ * Note that if you are working on a VMR that is a file, you'll want to be
+ * careful about how it is mapped (SHARED, PRIVATE, etc). */
+int duplicate_vmrs(struct proc *p, struct proc *new_p)
+{
+ int ret = 0;
+ struct vm_region *vmr, *vm_i;
+ TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) {
+ vmr = kmem_cache_alloc(vmr_kcache, 0);
+ if (!vmr)
+ return -ENOMEM;
+ vmr->vm_proc = new_p;
+ vmr->vm_base = vm_i->vm_base;
+ vmr->vm_end = vm_i->vm_end;
+ vmr->vm_prot = vm_i->vm_prot;
+ vmr->vm_flags = vm_i->vm_flags;
+ vmr->vm_file = vm_i->vm_file;
+ vmr->vm_foff = vm_i->vm_foff;
+ if (vm_i->vm_file) {
+ kref_get(&vm_i->vm_file->f_kref, 1);
+ pm_add_vmr(file2pm(vm_i->vm_file), vmr);
+ }
+ if (!vmr->vm_file || vmr->vm_flags & MAP_PRIVATE) {
+ assert(!(vmr->vm_flags & MAP_SHARED));
+ /* Copy over the memory from one VMR to the other */
+ if ((ret = copy_pages(p, new_p, vmr->vm_base, vmr->vm_end)))
+ return ret;
+ }
+ TAILQ_INSERT_TAIL(&new_p->vm_regions, vmr, vm_link);
+ }
+ return 0;
+}
+
+void print_vmrs(struct proc *p)
+{
+ int count = 0;
+ struct vm_region *vmr;
+ printk("VM Regions for proc %d\n", p->pid);
+ TAILQ_FOREACH(vmr, &p->vm_regions, vm_link)
+ printk("%02d: (%p - %p): 0x%08x, 0x%08x, %p, %p\n", count++,
+ vmr->vm_base, vmr->vm_end, vmr->vm_prot, vmr->vm_flags,
+ vmr->vm_file, vmr->vm_foff);
+}
+
+void enumerate_vmrs(struct proc *p,
+ void (*func)(struct vm_region *vmr, void *opaque),
+ void *opaque)
+{
+ struct vm_region *vmr;
+
+ spin_lock(&p->vmr_lock);
+ TAILQ_FOREACH(vmr, &p->vm_regions, vm_link)
+ func(vmr, opaque);
+ spin_unlock(&p->vmr_lock);
+}
+
+/* Error values aren't quite comprehensive - check man mmap() once we do better
+ * with the FS.
+ *
+ * The mmap call's offset is in units of PGSIZE (like Linux's mmap2()), but
+ * internally, the offset is tracked in bytes. The reason for the PGSIZE is for
+ * 32bit apps to enumerate large files, but a full 64bit system won't need that.
+ * We track things internally in bytes since that is how file pointers work, vmr
+ * bases and ends, and similar math. While it's not a hard change, there's no
+ * need for it, and ideally we'll be a fully 64bit system before we deal with
+ * files that large. */
void *mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags,
int fd, size_t offset)
{
- if (fd || offset) {
- printk("[kernel] mmap() does not support files yet.\n");
- return (void*SAFE)TC(-1);
- }
- /* TODO: make this work, instead of a ghetto hack
- * Find a valid range, make sure it doesn't run into the kernel
- * make sure there's enough memory (not exceeding quotas)
- * allocate and map the pages, update appropriate structures (vm_region)
- * return appropriate pointer
- * Right now, all we can do is give them the range they ask for.
- */
- //void *tmp = get_free_va_range(p->env_pgdir, addr, len);
- //printk("tmp = 0x%08x\n", tmp);
- if (!addr) {
- printk("[kernel] mmap() requires an address, since it's ghetto\n");
- return (void*SAFE)TC(-1);
- }
- // brief sanity check. must be page aligned and not reaching too high
- if (PGOFF(addr)) {
- printk("[kernel] mmap() page align your addr.\n");
- return (void*SAFE)TC(-1);
- }
- int num_pages = ROUNDUP(len, PGSIZE) / PGSIZE;
- pte_t *a_pte;
- // TODO: grab the appropriate mm_lock
- spin_lock_irqsave(&p->proc_lock);
- // make sure all pages are available, and in a reasonable range
- // TODO: can probably do this better with vm_regions.
- // can also consider not mapping to 0x00000000
+ struct file *file = NULL;
+ offset <<= PGSHIFT;
+ printd("mmap(addr %x, len %x, prot %x, flags %x, fd %x, off %x)\n", addr,
+ len, prot, flags, fd, offset);
+ if (fd >= 0 && (flags & MAP_ANON)) {
+ set_errno(EBADF);
+ return MAP_FAILED;
+ }
+ if (!len) {
+ set_errno(EINVAL);
+ return MAP_FAILED;
+ }
+ if (fd != -1) {
+ file = get_file_from_fd(&p->open_files, fd);
+ if (!file) {
+ set_errno(EBADF);
+ return MAP_FAILED;
+ }
+ }
+ /* If they don't care where to put it, we'll start looking after the break.
+ * We could just have userspace handle this (in glibc's mmap), so we don't
+ * need to know about BRK_END, but this will work for now (and may avoid
+ * bugs). Note that this limits mmap(0) a bit. Keep this in sync with
+ * __do_mmap()'s check. (Both are necessary). */
+ if (addr == 0)
+ addr = BRK_END;
+ /* Still need to enforce this: */
+ addr = MAX(addr, MMAP_LOWEST_VA);
+ /* Need to check addr + len, after we do our addr adjustments */
+ if ((addr + len > UMAPTOP) || (PGOFF(addr))) {
+ set_errno(EINVAL);
+ return MAP_FAILED;
+ }
+ void *result = do_mmap(p, addr, len, prot, flags, file, offset);
+ if (file)
+ kref_put(&file->f_kref);
+ return result;
+}
+
+/* Helper: returns TRUE if the VMR is allowed to access the file with prot.
+ * This is a bit ghetto still: messes with the file mode and assumes it can walk
+ * the dentry/inode paths without locking. It also ignores the CoW stuff we'll
+ * need to do eventually. */
+static bool check_file_perms(struct vm_region *vmr, struct file *file, int prot)
+{
+ assert(file);
+ if (prot & PROT_READ) {
+ if (check_perms(file->f_dentry->d_inode, S_IRUSR))
+ goto out_error;
+ }
+ if (prot & PROT_WRITE) {
+ /* if vmr maps a file as MAP_SHARED, then we need to make sure the
+ * protection change is in compliance with the open mode of the
+ * file. */
+ if (vmr->vm_flags & MAP_SHARED) {
+ if (!(file->f_mode & S_IWUSR)) {
+ /* at this point, we have a file opened in the wrong mode,
+ * but we may be allowed to access it still. */
+ if (check_perms(file->f_dentry->d_inode, S_IWUSR)) {
+ goto out_error;
+ } else {
+ /* it is okay, though we need to change the file mode. (note
+ * the lack of a lock/protection (TODO) */
+ file->f_mode |= S_IWUSR;
+ }
+ }
+ } else { /* PRIVATE mapping */
+ /* TODO: we want a CoW mapping (like we want in handle_page_fault()),
+ * since there is a concern of a process having the page already
+ * mapped in to a file it does not have permissions to, and then
+ * mprotecting it so it can access it. So we can't just change
+ * the prot, and we don't know yet if a page is mapped in. To
+ * handle this, we ought to sort out the CoW bit, and then this
+ * will be easy. Til then, just do a permissions check. If we
+ * start having weird issues with libc overwriting itself (since
+ * procs mprotect that W), then change this. */
+ if (check_perms(file->f_dentry->d_inode, S_IWUSR))
+ goto out_error;
+ }
+ }
+ return TRUE;
+out_error: /* for debugging */
+ printk("[kernel] mmap perm check failed for %s for access %d\n",
+ file_name(file), prot);
+ return FALSE;
+}
+
+/* Helper, maps in page at addr, but only if nothing is mapped there. Returns
+ * 0 on success. If this is called by non-PM code, we'll store your ref in the
+ * PTE. */
+static int map_page_at_addr(struct proc *p, struct page *page, uintptr_t addr,
+ int prot)
+{
+ pte_t pte;
+ spin_lock(&p->pte_lock); /* walking and changing PTEs */
+ /* find offending PTE (prob don't read this in). This might alloc an
+ * intermediate page table page. */
+ pte = pgdir_walk(p->env_pgdir, (void*)addr, TRUE);
+ if (!pte_walk_okay(pte)) {
+ spin_unlock(&p->pte_lock);
+ return -ENOMEM;
+ }
+ /* a spurious, valid PF is possible due to a legit race: the page might have
+ * been faulted in by another core already (and raced on the memory lock),
+ * in which case we should just return. */
+ if (pte_is_present(pte)) {
+ spin_unlock(&p->pte_lock);
+ /* callers expect us to eat the ref if we succeed. */
+ page_decref(page);
+ return 0;
+ }
+ if (pte_is_mapped(pte)) {
+ /* we're clobbering an old entry. if we're just updating the prot, then
+ * it's no big deal. o/w, there might be an issue. */
+ if (page2pa(page) != pte_get_paddr(pte)) {
+ warn_once("Clobbered a PTE mapping (%p -> %p)\n", pte_print(pte),
+ page2pa(page) | prot);
+ }
+ page_decref(pa2page(pte_get_paddr(pte)));
+ }
+ /* preserve the dirty bit - pm removal could be looking concurrently */
+ prot |= (pte_is_dirty(pte) ? PTE_D : 0);
+ /* We have a ref to page, which we are storing in the PTE */
+ pte_write(pte, page2pa(page), prot);
+ spin_unlock(&p->pte_lock);
+ return 0;
+}
+
+/* Helper: copies *pp's contents to a new page, replacing your page pointer. If
+ * this succeeds, you'll have a non-PM page, which matters for how you put it.*/
+static int __copy_and_swap_pmpg(struct proc *p, struct page **pp)
+{
+ struct page *new_page, *old_page = *pp;
+ if (upage_alloc(p, &new_page, FALSE))
+ return -ENOMEM;
+ memcpy(page2kva(new_page), page2kva(old_page), PGSIZE);
+ pm_put_page(old_page);
+ *pp = new_page;
+ return 0;
+}
+
+/* Hold the VMR lock when you call this - it'll assume the entire VA range is
+ * mappable, which isn't true if there are concurrent changes to the VMRs. */
+static int populate_anon_va(struct proc *p, uintptr_t va, unsigned long nr_pgs,
+ int pte_prot)
+{
+ struct page *page;
+ int ret;
+ for (long i = 0; i < nr_pgs; i++) {
+ if (upage_alloc(p, &page, TRUE))
+ return -ENOMEM;
+ /* could imagine doing a memwalk instead of a for loop */
+ ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot);
+ if (ret) {
+ page_decref(page);
+ return ret;
+ }
+ }
+ return 0;
+}
+
+/* This will periodically unlock the vmr lock. */
+static int populate_pm_va(struct proc *p, uintptr_t va, unsigned long nr_pgs,
+ int pte_prot, struct page_map *pm, size_t offset,
+ int flags, bool exec)
+{
+ int ret = 0;
+ unsigned long pm_idx0 = offset >> PGSHIFT;
+ int vmr_history = ACCESS_ONCE(p->vmr_history);
+ struct page *page;
+
+ /* locking rules: start the loop holding the vmr lock, enter and exit the
+ * entire func holding the lock. */
+ for (long i = 0; i < nr_pgs; i++) {
+ ret = pm_load_page_nowait(pm, pm_idx0 + i, &page);
+ if (ret) {
+ if (ret != -EAGAIN)
+ break;
+ spin_unlock(&p->vmr_lock);
+ /* might block here, can't hold the spinlock */
+ ret = pm_load_page(pm, pm_idx0 + i, &page);
+ spin_lock(&p->vmr_lock);
+ if (ret)
+ break;
+ /* while we were sleeping, the VMRs could have changed on us. */
+ if (vmr_history != ACCESS_ONCE(p->vmr_history)) {
+ pm_put_page(page);
+ printk("[kernel] FYI: VMR changed during populate\n");
+ break;
+ }
+ }
+ if (flags & MAP_PRIVATE) {
+ ret = __copy_and_swap_pmpg(p, &page);
+ if (ret) {
+ pm_put_page(page);
+ break;
+ }
+ }
+ /* if this is an executable page, we might have to flush the
+ * instruction cache if our HW requires it.
+ * TODO: is this still needed? andrew put this in a while ago*/
+ if (exec)
+ icache_flush_page(0, page2kva(page));
+ ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot);
+ if (atomic_read(&page->pg_flags) & PG_PAGEMAP)
+ pm_put_page(page);
+ if (ret)
+ break;
+ }
+ return ret;
+}
+
+void *do_mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags,
+ struct file *file, size_t offset)
+{
+ len = ROUNDUP(len, PGSIZE);
+ struct vm_region *vmr, *vmr_temp;
+
+ /* read/write vmr lock (will change the tree) */
+ spin_lock(&p->vmr_lock);
+ p->vmr_history++;
+ /* Sanity check, for callers that bypass mmap(). We want addr for anon
+ * memory to start above the break limit (BRK_END), but not 0. Keep this in
+ * sync with BRK_END in mmap(). */
+ if (addr == 0)
+ addr = BRK_END;
+ assert(!PGOFF(offset));
+
+ /* MCPs will need their code and data pinned. This check will start to fail
+ * after uthread_slim_init(), at which point userspace should have enough
+ * control over its mmaps (i.e. no longer done by LD or load_elf) that it
+ * can ask for pinned and populated pages. Except for dl_opens(). */
+ struct preempt_data *vcpd = &p->procdata->vcore_preempt_data[0];
+ if (file && (atomic_read(&vcpd->flags) & VC_SCP_NOVCCTX))
+ flags |= MAP_POPULATE | MAP_LOCKED;
+ /* Need to make sure nothing is in our way when we want a FIXED location.
+ * We just need to split on the end points (if they exist), and then remove
+ * everything in between. __do_munmap() will do this. Careful, this means
+ * an mmap can be an implied munmap() (not my call...). */
+ if (flags & MAP_FIXED)
+ __do_munmap(p, addr, len);
+ vmr = create_vmr(p, addr, len);
+ if (!vmr) {
+ printk("[kernel] do_mmap() aborted for %p + %d!\n", addr, len);
+ set_errno(ENOMEM);
+ spin_unlock(&p->vmr_lock);
+ return MAP_FAILED;
+ }
+ addr = vmr->vm_base;
+ vmr->vm_prot = prot;
+ vmr->vm_flags = flags;
+ if (file) {
+ if (!check_file_perms(vmr, file, prot)) {
+ assert(!vmr->vm_file);
+ destroy_vmr(vmr);
+ set_errno(EACCES);
+ spin_unlock(&p->vmr_lock);
+ return MAP_FAILED;
+ }
+ /* TODO: consider locking the file while checking (not as manadatory as
+ * in handle_page_fault() */
+ if (nr_pages(offset + len) > nr_pages(file->f_dentry->d_inode->i_size)) {
+ /* We're allowing them to set up the VMR, though if they attempt to
+ * fault in any pages beyond the file's limit, they'll fail. Since
+ * they might not access the region, we need to make sure POPULATE
+ * is off. FYI, 64 bit glibc shared libs map in an extra 2MB of
+ * unaligned space between their RO and RW sections, but then
+ * immediately mprotect it to PROT_NONE. */
+ flags &= ~MAP_POPULATE;
+ }
+ /* Prep the FS to make sure it can mmap the file. Slightly weird
+ * semantics: if we fail and had munmapped the space, they will have a
+ * hole in their VM now. */
+ if (file->f_op->mmap(file, vmr)) {
+ assert(!vmr->vm_file);
+ destroy_vmr(vmr);
+ set_errno(EACCES); /* not quite */
+ spin_unlock(&p->vmr_lock);
+ return MAP_FAILED;
+ }
+ kref_get(&file->f_kref, 1);
+ pm_add_vmr(file2pm(file), vmr);
+ }
+ vmr->vm_file = file;
+ vmr->vm_foff = offset;
+ vmr = merge_me(vmr); /* attempts to merge with neighbors */
+
+ if (flags & MAP_POPULATE && prot != PROT_NONE) {
+ int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW :
+ (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0;
+ unsigned long nr_pgs = len >> PGSHIFT;
+ int ret = 0;
+ if (!file) {
+ ret = populate_anon_va(p, addr, nr_pgs, pte_prot);
+ } else {
+ /* Note: this will unlock if it blocks. our refcnt on the file
+ * keeps the pm alive when we unlock */
+ ret = populate_pm_va(p, addr, nr_pgs, pte_prot, file->f_mapping,
+ offset, flags, prot & PROT_EXEC);
+ }
+ if (ret == -ENOMEM) {
+ spin_unlock(&p->vmr_lock);
+ printk("[kernel] ENOMEM, killing %d\n", p->pid);
+ proc_destroy(p);
+ return MAP_FAILED; /* will never make it back to userspace */
+ }
+ }
+ spin_unlock(&p->vmr_lock);
+ return (void*)addr;
+}
+
+int mprotect(struct proc *p, uintptr_t addr, size_t len, int prot)
+{
+ printd("mprotect: (addr %p, len %p, prot 0x%x)\n", addr, len, prot);
+ if (!len)
+ return 0;
+ if ((addr % PGSIZE) || (addr < MMAP_LOWEST_VA)) {
+ set_errno(EINVAL);
+ return -1;
+ }
+ uintptr_t end = ROUNDUP(addr + len, PGSIZE);
+ if (end > UMAPTOP || addr > end) {
+ set_errno(ENOMEM);
+ return -1;
+ }
+ /* read/write lock, will probably change the tree and settings */
+ spin_lock(&p->vmr_lock);
+ p->vmr_history++;
+ int ret = __do_mprotect(p, addr, len, prot);
+ spin_unlock(&p->vmr_lock);
+ return ret;
+}
+
+/* This does not care if the region is not mapped. POSIX says you should return
+ * ENOMEM if any part of it is unmapped. Can do this later if we care, based on
+ * the VMRs, not the actual page residency. */
+int __do_mprotect(struct proc *p, uintptr_t addr, size_t len, int prot)
+{
+ struct vm_region *vmr, *next_vmr;
+ pte_t pte;
+ bool shootdown_needed = FALSE;
+ int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW :
+ (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : PTE_NONE;
+ /* TODO: this is aggressively splitting, when we might not need to if the
+ * prots are the same as the previous. Plus, there are three excessive
+ * scans. Finally, we might be able to merge when we are done. */
+ isolate_vmrs(p, addr, len);
+ vmr = find_first_vmr(p, addr);
+ while (vmr && vmr->vm_base < addr + len) {
+ if (vmr->vm_prot == prot)
+ continue;
+ if (vmr->vm_file && !check_file_perms(vmr, vmr->vm_file, prot)) {
+ set_errno(EACCES);
+ return -1;
+ }
+ vmr->vm_prot = prot;
+ spin_lock(&p->pte_lock); /* walking and changing PTEs */
+ /* TODO: use a memwalk. At a minimum, we need to change every existing
+ * PTE that won't trigger a PF (meaning, present PTEs) to have the new
+ * prot. The others will fault on access, and we'll change the PTE
+ * then. In the off chance we have a mapped but not present PTE, we
+ * might as well change it too, since we're already here. */
+ for (uintptr_t va = vmr->vm_base; va < vmr->vm_end; va += PGSIZE) {
+ pte = pgdir_walk(p->env_pgdir, (void*)va, 0);
+ if (pte_walk_okay(pte) && pte_is_mapped(pte)) {
+ pte_replace_perm(pte, pte_prot);
+ shootdown_needed = TRUE;
+ }
+ }
+ spin_unlock(&p->pte_lock);
+ next_vmr = TAILQ_NEXT(vmr, vm_link);
+ vmr = next_vmr;
+ }
+ if (shootdown_needed)
+ proc_tlbshootdown(p, addr, addr + len);
+ return 0;
+}
+
+int munmap(struct proc *p, uintptr_t addr, size_t len)
+{
+ printd("munmap(addr %x, len %x)\n", addr, len);
+ if (!len)
+ return 0;
+ len = ROUNDUP(len, PGSIZE);
+
+ if ((addr % PGSIZE) || (addr < MMAP_LOWEST_VA)) {
+ set_errno(EINVAL);
+ return -1;
+ }
+ uintptr_t end = ROUNDUP(addr + len, PGSIZE);
+ if (end > UMAPTOP || addr > end) {
+ set_errno(EINVAL);
+ return -1;
+ }
+ /* read/write: changing the vmrs (trees, properties, and whatnot) */
+ spin_lock(&p->vmr_lock);
+ p->vmr_history++;
+ int ret = __do_munmap(p, addr, len);
+ spin_unlock(&p->vmr_lock);
+ return ret;
+}
+
+static int __munmap_mark_not_present(struct proc *p, pte_t pte, void *va,
+ void *arg)
+{
+ bool *shootdown_needed = (bool*)arg;
+ /* could put in some checks here for !P and also !0 */
+ if (!pte_is_present(pte)) /* unmapped (== 0) *ptes are also not PTE_P */
+ return 0;
+ pte_clear_present(pte);
+ *shootdown_needed = TRUE;
+ return 0;
+}
+
+/* If our page is actually in the PM, we don't do anything. All a page map
+ * really needs is for our VMR to no longer track it (vmr being in the pm's
+ * list) and to not point at its pages (mark it 0, dude).
+ *
+ * But private mappings mess with that a bit. Luckily, we can tell by looking
+ * at a page whether the specific page is in the PM or not. If it isn't, we
+ * still need to free our "VMR local" copy.
+ *
+ * For pages in a PM, we're racing with PM removers. Both of us sync with the
+ * mm lock, so once we hold the lock, it's a matter of whether or not the PTE is
+ * 0 or not. If it isn't, then we're still okay to look at the page. Consider
+ * the PTE a weak ref on the page. So long as you hold the mm lock, you can
+ * look at the PTE and know the page isn't being freed. */
+static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg)
+{
+ struct page *page;
+ if (pte_is_unmapped(pte))
+ return 0;
+ page = pa2page(pte_get_paddr(pte));
+ pte_clear(pte);
+ if (!(atomic_read(&page->pg_flags) & PG_PAGEMAP))
+ page_decref(page);
+ return 0;
+}
+
+int __do_munmap(struct proc *p, uintptr_t addr, size_t len)
+{
+ struct vm_region *vmr, *next_vmr, *first_vmr;
+ bool shootdown_needed = FALSE;
+
+ /* TODO: this will be a bit slow, since we end up doing three linear
+ * searches (two in isolate, one in find_first). */
+ isolate_vmrs(p, addr, len);
+ first_vmr = find_first_vmr(p, addr);
+ vmr = first_vmr;
+ spin_lock(&p->pte_lock); /* changing PTEs */
+ while (vmr && vmr->vm_base < addr + len) {
+ env_user_mem_walk(p, (void*)vmr->vm_base, vmr->vm_end - vmr->vm_base,
+ __munmap_mark_not_present, &shootdown_needed);
+ vmr = TAILQ_NEXT(vmr, vm_link);
+ }
+ spin_unlock(&p->pte_lock);
+ /* we haven't freed the pages yet; still using the PTEs to store the them.
+ * There should be no races with inserts/faults, since we still hold the mm
+ * lock since the previous CB. */
+ if (shootdown_needed)
+ proc_tlbshootdown(p, addr, addr + len);
+ vmr = first_vmr;
+ while (vmr && vmr->vm_base < addr + len) {
+ /* there is rarely more than one VMR in this loop. o/w, we'll need to
+ * gather up the vmrs and destroy outside the pte_lock. */
+ spin_lock(&p->pte_lock); /* changing PTEs */
+ env_user_mem_walk(p, (void*)vmr->vm_base, vmr->vm_end - vmr->vm_base,
+ __vmr_free_pgs, 0);
+ spin_unlock(&p->pte_lock);
+ next_vmr = TAILQ_NEXT(vmr, vm_link);
+ destroy_vmr(vmr);
+ vmr = next_vmr;
+ }
+ return 0;
+}
+
+/* Helper - drop the page differently based on where it is from */
+static void __put_page(struct page *page)
+{
+ if (atomic_read(&page->pg_flags) & PG_PAGEMAP)
+ pm_put_page(page);
+ else
+ page_decref(page);
+}
+
+static int __hpf_load_page(struct proc *p, struct page_map *pm,
+ unsigned long idx, struct page **page, bool first)
+{
+ int ret = 0;
+ int coreid = core_id();
+ struct per_cpu_info *pcpui = &per_cpu_info[coreid];
+ bool wake_scp = FALSE;
+ spin_lock(&p->proc_lock);
+ switch (p->state) {
+ case (PROC_RUNNING_S):
+ wake_scp = TRUE;
+ __proc_set_state(p, PROC_WAITING);
+ /* it's possible for HPF to loop a few times; we can only save the
+ * first time, o/w we could clobber. */
+ if (first) {
+ __proc_save_context_s(p, pcpui->cur_ctx);
+ __proc_save_fpu_s(p);
+ /* We clear the owner, since userspace doesn't run here
+ * anymore, but we won't abandon since the fault handler
+ * still runs in our process. */
+ clear_owning_proc(coreid);
+ }
+ /* other notes: we don't currently need to tell the ksched
+ * we switched from running to waiting, though we probably
+ * will later for more generic scheds. */
+ break;
+ case (PROC_RUNNABLE_M):
+ case (PROC_RUNNING_M):
+ spin_unlock(&p->proc_lock);
+ return -EAGAIN; /* will get reflected back to userspace */
+ case (PROC_DYING):
+ spin_unlock(&p->proc_lock);
+ return -EINVAL;
+ default:
+ /* shouldn't have any waitings, under the current yield style. if
+ * this becomes an issue, we can branch on is_mcp(). */
+ printk("HPF unexpectecd state(%s)", procstate2str(p->state));
+ spin_unlock(&p->proc_lock);
+ return -EINVAL;
+ }
+ spin_unlock(&p->proc_lock);
+ ret = pm_load_page(pm, idx, page);
+ if (wake_scp)
+ proc_wakeup(p);
+ if (ret) {
+ printk("load failed with ret %d\n", ret);
+ return ret;
+ }
+ /* need to put our old ref, next time around HPF will get another. */
+ pm_put_page(*page);
+ return 0;
+}
+
+/* Returns 0 on success, or an appropriate -error code.
+ *
+ * Notes: if your TLB caches negative results, you'll need to flush the
+ * appropriate tlb entry. Also, you could have a weird race where a present PTE
+ * faulted for a different reason (was mprotected on another core), and the
+ * shootdown is on its way. Userspace should have waited for the mprotect to
+ * return before trying to write (or whatever), so we don't care and will fault
+ * them. */
+int handle_page_fault(struct proc *p, uintptr_t va, int prot)
+{
+ struct vm_region *vmr;
+ struct page *a_page;
+ unsigned int f_idx; /* index of the missing page in the file */
+ int ret = 0;
+ bool first = TRUE;
+ va = ROUNDDOWN(va,PGSIZE);
+
+refault:
+ /* read access to the VMRs TODO: RCU */
+ spin_lock(&p->vmr_lock);
+ /* Check the vmr's protection */
+ vmr = find_vmr(p, va);
+ if (!vmr) { /* not mapped at all */
+ printd("fault: %p not mapped\n", va);
+ ret = -EFAULT;
+ goto out;
+ }
+ if (!(vmr->vm_prot & prot)) { /* wrong prots for this vmr */
+ ret = -EPERM;
+ goto out;
+ }
+ if (!vmr->vm_file) {
+ /* No file - just want anonymous memory */
+ if (upage_alloc(p, &a_page, TRUE)) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ } else {
+ /* If this fails, either something got screwed up with the VMR, or the
+ * permissions changed after mmap/mprotect. Either way, I want to know
+ * (though it's not critical). */
+ if (!check_file_perms(vmr, vmr->vm_file, prot))
+ printk("[kernel] possible issue with VMR prots on file %s!\n",
+ file_name(vmr->vm_file));
+ /* Load the file's page in the page cache.
+ * TODO: (BLK) Note, we are holding the mem lock! We need to rewrite
+ * this stuff so we aren't hold the lock as excessively as we are, and
+ * such that we can block and resume later. */
+ assert(!PGOFF(va - vmr->vm_base + vmr->vm_foff));
+ f_idx = (va - vmr->vm_base + vmr->vm_foff) >> PGSHIFT;
+ /* TODO: need some sort of lock on the file to deal with someone
+ * concurrently shrinking it. Adding 1 to f_idx, since it is
+ * zero-indexed */
+ if (f_idx + 1 > nr_pages(vmr->vm_file->f_dentry->d_inode->i_size)) {
+ /* We're asking for pages that don't exist in the file */
+ /* TODO: unlock the file */
+ ret = -ESPIPE; /* linux sends a SIGBUS at access time */
+ goto out;
+ }
+ ret = pm_load_page_nowait(vmr->vm_file->f_mapping, f_idx, &a_page);
+ if (ret) {
+ if (ret != -EAGAIN)
+ goto out;
+ /* keep the file alive after we unlock */
+ kref_get(&vmr->vm_file->f_kref, 1);
+ spin_unlock(&p->vmr_lock);
+ ret = __hpf_load_page(p, vmr->vm_file->f_mapping, f_idx, &a_page,
+ first);
+ first = FALSE;
+ kref_put(&vmr->vm_file->f_kref);
+ if (ret)
+ return ret;
+ goto refault;
+ }
+ /* If we want a private map, we'll preemptively give you a new page. We
+ * used to just care if it was private and writable, but were running
+ * into issues with libc changing its mapping (map private, then
+ * mprotect to writable...) In the future, we want to CoW this anyway,
+ * so it's not a big deal. */
+ if ((vmr->vm_flags & MAP_PRIVATE)) {
+ ret = __copy_and_swap_pmpg(p, &a_page);
+ if (ret)
+ goto out_put_pg;
+ }
+ /* if this is an executable page, we might have to flush the instruction
+ * cache if our HW requires it. */
+ if (vmr->vm_prot & PROT_EXEC)
+ icache_flush_page((void*)va, page2kva(a_page));
+ }
+ /* update the page table TODO: careful with MAP_PRIVATE etc. might do this
+ * separately (file, no file) */
+ int pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW :
+ (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0;
+ ret = map_page_at_addr(p, a_page, va, pte_prot);
+ if (ret) {
+ printd("map_page_at for %p fails with %d\n", va, ret);
+ }
+ /* fall through, even for errors */
+out_put_pg:
+ /* the VMR's existence in the PM (via the mmap) allows us to have PTE point
+ * to a_page without it magically being reallocated. For non-PM memory
+ * (anon memory or private pages) we transferred the ref to the PTE. */
+ if (atomic_read(&a_page->pg_flags) & PG_PAGEMAP)
+ pm_put_page(a_page);
+out:
+ spin_unlock(&p->vmr_lock);
+ return ret;
+}
+
+/* Attempts to populate the pages, as if there was a page faults. Bails on
+ * errors, and returns the number of pages populated. */
+unsigned long populate_va(struct proc *p, uintptr_t va, unsigned long nr_pgs)
+{
+ struct vm_region *vmr, vmr_copy;
+ unsigned long nr_pgs_this_vmr;
+ unsigned long nr_filled = 0;
+ struct page *page;
+ int pte_prot;
+
+ /* we can screw around with ways to limit the find_vmr calls (can do the
+ * next in line if we didn't unlock, etc., but i don't expect us to do this
+ * for more than a single VMR in most cases. */
+ spin_lock(&p->vmr_lock);
+ while (nr_pgs) {
+ vmr = find_vmr(p, va);
+ if (!vmr)
+ break;
+ if (vmr->vm_prot == PROT_NONE)
+ break;
+ pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW :
+ (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0;
+ nr_pgs_this_vmr = MIN(nr_pgs, (vmr->vm_end - va) >> PGSHIFT);
+ if (!vmr->vm_file) {
+ if (populate_anon_va(p, va, nr_pgs_this_vmr, pte_prot)) {
+ /* on any error, we can just bail. we might be underestimating
+ * nr_filled. */
+ break;
+ }
+ } else {
+ /* need to keep the file alive in case we unlock/block */
+ kref_get(&vmr->vm_file->f_kref, 1);
+ if (populate_pm_va(p, va, nr_pgs_this_vmr, pte_prot,
+ vmr->vm_file->f_mapping,
+ vmr->vm_foff - (va - vmr->vm_base),
+ vmr->vm_flags, vmr->vm_prot & PROT_EXEC)) {
+ /* we might have failed if the underlying file doesn't cover the
+ * mmap window, depending on how we'll deal with truncation. */
+ break;
+ }
+ kref_put(&vmr->vm_file->f_kref);
+ }
+ nr_filled += nr_pgs_this_vmr;
+ va += nr_pgs_this_vmr << PGSHIFT;
+ nr_pgs -= nr_pgs_this_vmr;
+ }
+ spin_unlock(&p->vmr_lock);
+ return nr_filled;
+}
+
+/* Kernel Dynamic Memory Mappings */
+uintptr_t dyn_vmap_llim = KERN_DYN_TOP;
+spinlock_t dyn_vmap_lock = SPINLOCK_INITIALIZER;
+
+/* Reserve space in the kernel dynamic memory map area */
+uintptr_t get_vmap_segment(unsigned long num_pages)
+{
+ uintptr_t retval;
+ spin_lock(&dyn_vmap_lock);
+ retval = dyn_vmap_llim - num_pages * PGSIZE;
+ if ((retval > ULIM) && (retval < KERN_DYN_TOP)) {
+ dyn_vmap_llim = retval;
+ } else {
+ warn("[kernel] dynamic mapping failed!");
+ retval = 0;
+ }
+ spin_unlock(&dyn_vmap_lock);
+ return retval;
+}
+
+/* Give up your space. Note this isn't supported yet */
+uintptr_t put_vmap_segment(uintptr_t vaddr, unsigned long num_pages)
+{
+ /* TODO: use vmem regions for adjustable vmap segments */
+ warn("Not implemented, leaking vmem space.\n");
+ return 0;
+}
+
+/* Map a virtual address chunk to physical addresses. Make sure you got a vmap
+ * segment before actually trying to do the mapping.
+ *
+ * Careful with more than one 'page', since it will assume your physical pages
+ * are also contiguous. Most callers will only use one page.
+ *
+ * Finally, note that this does not care whether or not there are real pages
+ * being mapped, and will not attempt to incref your page (if there is such a
+ * thing). Handle your own refcnting for pages. */
+int map_vmap_segment(uintptr_t vaddr, uintptr_t paddr, unsigned long num_pages,
+ int perm)
+{
+ /* For now, we only handle the root pgdir, and not any of the other ones
+ * (like for processes). To do so, we'll need to insert into every pgdir,
+ * and send tlb shootdowns to those that are active (which we don't track
+ * yet). */
+ extern int booting;
+ assert(booting);
+
+ /* TODO: (MM) you should lock on boot pgdir modifications. A vm region lock
+ * isn't enough, since there might be a race on outer levels of page tables.
+ * For now, we'll just use the dyn_vmap_lock (which technically works). */
+ spin_lock(&dyn_vmap_lock);
+ pte_t pte;
+#ifdef CONFIG_X86
+ perm |= PTE_G;
+#endif
for (int i = 0; i < num_pages; i++) {
- a_pte = pgdir_walk(p->env_pgdir, (void*SNT)addr, 0);
- if (a_pte && *a_pte & PTE_P)
- goto mmap_abort;
- if (addr + i*PGSIZE >= USTACKBOT)
- goto mmap_abort;
+ pte = pgdir_walk(boot_pgdir, (void*)(vaddr + i * PGSIZE), 1);
+ if (!pte_walk_okay(pte)) {
+ spin_unlock(&dyn_vmap_lock);
+ return -ENOMEM;
+ }
+ /* You probably should have unmapped first */
+ if (pte_is_mapped(pte))
+ warn("Existing PTE value %p\n", pte_print(pte));
+ pte_write(pte, paddr + i * PGSIZE, perm);
}
- page_t *a_page;
+ spin_unlock(&dyn_vmap_lock);
+ return 0;
+}
+
+/* Unmaps / 0's the PTEs of a chunk of vaddr space */
+int unmap_vmap_segment(uintptr_t vaddr, unsigned long num_pages)
+{
+ /* Not a big deal - won't need this til we do something with kthreads */
+ warn("Incomplete, don't call this yet.");
+ spin_lock(&dyn_vmap_lock);
+ /* TODO: For all pgdirs */
+ pte_t pte;
for (int i = 0; i < num_pages; i++) {
- if (upage_alloc(p, &a_page, 1))
- goto mmap_abort;
- // TODO: give them the permissions they actually want
- if (page_insert(p->env_pgdir, a_page, (void*SNT)addr + i*PGSIZE,
- PTE_USER_RW)) {
- page_free(a_page);
- goto mmap_abort;
- }
- }
- // TODO: release the appropriate mm_lock
- spin_unlock_irqsave(&p->proc_lock);
- return (void*SAFE)TC(addr);
-
- // TODO: if there's a failure, we should go back through the addr+len range
- // and dealloc everything. or at least define what we want to do if we run
- // out of memory.
- mmap_abort:
- // TODO: release the appropriate mm_lock
- spin_unlock_irqsave(&p->proc_lock);
- // not a kernel problem, like if they ask to mmap a mapped location.
- printd("[kernel] mmap() aborted!\n");
- // mmap's semantics. we need a better error propagation system
- return (void*SAFE)TC(-1); // this is also ridiculous
+ pte = pgdir_walk(boot_pgdir, (void*)(vaddr + i * PGSIZE), 1);
+ if (pte_walk_okay(pte))
+ pte_clear(pte);
+ }
+ /* TODO: TLB shootdown. Also note that the global flag is set on the PTE
+ * (for x86 for now), which requires a global shootdown. bigger issue is
+ * the TLB shootdowns for multiple pgdirs. We'll need to remove from every
+ * pgdir, and send tlb shootdowns to those that are active (which we don't
+ * track yet). */
+ spin_unlock(&dyn_vmap_lock);
+ return 0;
+}
+
+/* This can handle unaligned paddrs */
+static uintptr_t vmap_pmem_flags(uintptr_t paddr, size_t nr_bytes, int flags)
+{
+ uintptr_t vaddr;
+ unsigned long nr_pages;
+ assert(nr_bytes && paddr);
+ nr_bytes += PGOFF(paddr);
+ nr_pages = ROUNDUP(nr_bytes, PGSIZE) >> PGSHIFT;
+ vaddr = get_vmap_segment(nr_pages);
+ if (!vaddr) {
+ warn("Unable to get a vmap segment"); /* probably a bug */
+ return 0;
+ }
+ /* it's not strictly necessary to drop paddr's pgoff, but it might save some
+ * vmap heartache in the future. */
+ if (map_vmap_segment(vaddr, PG_ADDR(paddr), nr_pages,
+ PTE_KERN_RW | flags)) {
+ warn("Unable to map a vmap segment"); /* probably a bug */
+ return 0;
+ }
+ return vaddr + PGOFF(paddr);
+}
+
+uintptr_t vmap_pmem(uintptr_t paddr, size_t nr_bytes)
+{
+ return vmap_pmem_flags(paddr, nr_bytes, 0);
+}
+
+uintptr_t vmap_pmem_nocache(uintptr_t paddr, size_t nr_bytes)
+{
+ return vmap_pmem_flags(paddr, nr_bytes, PTE_NOCACHE);
+}
+
+int vunmap_vmem(uintptr_t vaddr, size_t nr_bytes)
+{
+ unsigned long nr_pages = ROUNDUP(nr_bytes, PGSIZE) >> PGSHIFT;
+ unmap_vmap_segment(vaddr, nr_pages);
+ put_vmap_segment(vaddr, nr_pages);
+ return 0;
}