3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
16 #warning "find where something like __ALIGN_MASK is defined"
17 #define __ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
19 * bitmaps provide an array of bits, implemented using an an
20 * array of unsigned longs. The number of valid bits in a
21 * given bitmap does _not_ need to be an exact multiple of
24 * The possible unused bits in the last, partially used word
25 * of a bitmap are 'don't care'. The implementation makes
26 * no particular effort to keep them zero. It ensures that
27 * their value will not affect the results of any operation.
28 * The bitmap operations that return Boolean (bitmap_empty,
29 * for example) or scalar (bitmap_weight, for example) results
30 * carefully filter out these unused bits from impacting their
33 * These operations actually hold to a slightly stronger rule:
34 * if you don't input any bitmaps to these ops that have some
35 * unused bits set, then they won't output any set unused bits
38 * The byte ordering of bitmaps is more natural on little
39 * endian architectures. See the big-endian headers
40 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
41 * for the best explanations of this ordering.
44 int __bitmap_empty(const unsigned long *bitmap, int bits)
46 int k, lim = bits/BITS_PER_LONG;
47 for (k = 0; k < lim; ++k)
51 if (bits % BITS_PER_LONG)
52 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
58 int __bitmap_full(const unsigned long *bitmap, int bits)
60 int k, lim = bits/BITS_PER_LONG;
61 for (k = 0; k < lim; ++k)
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
72 int __bitmap_equal(const unsigned long *bitmap1,
73 const unsigned long *bitmap2, int bits)
75 int k, lim = bits/BITS_PER_LONG;
76 for (k = 0; k < lim; ++k)
77 if (bitmap1[k] != bitmap2[k])
80 if (bits % BITS_PER_LONG)
81 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
89 int k, lim = bits/BITS_PER_LONG;
90 for (k = 0; k < lim; ++k)
93 if (bits % BITS_PER_LONG)
94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
98 * __bitmap_shift_right - logical right shift of the bits in a bitmap
99 * @dst : destination bitmap
100 * @src : source bitmap
101 * @shift : shift by this many bits
102 * @bits : bitmap size, in bits
104 * Shifting right (dividing) means moving bits in the MS -> LS bit
105 * direction. Zeros are fed into the vacated MS positions and the
106 * LS bits shifted off the bottom are lost.
108 void __bitmap_shift_right(unsigned long *dst,
109 const unsigned long *src, int shift, int bits)
111 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
112 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
113 unsigned long mask = (1UL << left) - 1;
114 for (k = 0; off + k < lim; ++k) {
115 unsigned long upper, lower;
118 * If shift is not word aligned, take lower rem bits of
119 * word above and make them the top rem bits of result.
121 if (!rem || off + k + 1 >= lim)
124 upper = src[off + k + 1];
125 if (off + k + 1 == lim - 1 && left)
128 lower = src[off + k];
129 if (left && off + k == lim - 1)
131 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
132 if (left && k == lim - 1)
136 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
141 * __bitmap_shift_left - logical left shift of the bits in a bitmap
142 * @dst : destination bitmap
143 * @src : source bitmap
144 * @shift : shift by this many bits
145 * @bits : bitmap size, in bits
147 * Shifting left (multiplying) means moving bits in the LS -> MS
148 * direction. Zeros are fed into the vacated LS bit positions
149 * and those MS bits shifted off the top are lost.
152 void __bitmap_shift_left(unsigned long *dst,
153 const unsigned long *src, int shift, int bits)
155 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
156 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
157 for (k = lim - off - 1; k >= 0; --k) {
158 unsigned long upper, lower;
161 * If shift is not word aligned, take upper rem bits of
162 * word below and make them the bottom rem bits of result.
169 if (left && k == lim - 1)
170 upper &= (1UL << left) - 1;
171 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
172 if (left && k + off == lim - 1)
173 dst[k + off] &= (1UL << left) - 1;
176 memset(dst, 0, off*sizeof(unsigned long));
179 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
180 const unsigned long *bitmap2, int bits)
183 int nr = BITS_TO_LONGS(bits);
184 unsigned long result = 0;
186 for (k = 0; k < nr; k++)
187 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
192 const unsigned long *bitmap2, int bits)
195 int nr = BITS_TO_LONGS(bits);
197 for (k = 0; k < nr; k++)
198 dst[k] = bitmap1[k] | bitmap2[k];
201 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
202 const unsigned long *bitmap2, int bits)
205 int nr = BITS_TO_LONGS(bits);
207 for (k = 0; k < nr; k++)
208 dst[k] = bitmap1[k] ^ bitmap2[k];
211 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
212 const unsigned long *bitmap2, int bits)
215 int nr = BITS_TO_LONGS(bits);
216 unsigned long result = 0;
218 for (k = 0; k < nr; k++)
219 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
223 int __bitmap_intersects(const unsigned long *bitmap1,
224 const unsigned long *bitmap2, int bits)
226 int k, lim = bits/BITS_PER_LONG;
227 for (k = 0; k < lim; ++k)
228 if (bitmap1[k] & bitmap2[k])
231 if (bits % BITS_PER_LONG)
232 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
237 int __bitmap_subset(const unsigned long *bitmap1,
238 const unsigned long *bitmap2, int bits)
240 int k, lim = bits/BITS_PER_LONG;
241 for (k = 0; k < lim; ++k)
242 if (bitmap1[k] & ~bitmap2[k])
245 if (bits % BITS_PER_LONG)
246 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 int __bitmap_weight(const unsigned long *bitmap, int bits)
253 int k, w = 0, lim = bits/BITS_PER_LONG;
255 for (k = 0; k < lim; k++)
256 w += hweight_long(bitmap[k]);
258 if (bits % BITS_PER_LONG)
259 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
264 void bitmap_set(unsigned long *map, int start, int nr)
266 unsigned long *p = map + BIT_WORD(start);
267 const int size = start + nr;
268 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
269 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
271 while (nr - bits_to_set >= 0) {
274 bits_to_set = BITS_PER_LONG;
279 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
284 void bitmap_clear(unsigned long *map, int start, int nr)
286 unsigned long *p = map + BIT_WORD(start);
287 const int size = start + nr;
288 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
289 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
291 while (nr - bits_to_clear >= 0) {
292 *p &= ~mask_to_clear;
294 bits_to_clear = BITS_PER_LONG;
295 mask_to_clear = ~0UL;
299 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
300 *p &= ~mask_to_clear;
305 * bitmap_find_next_zero_area - find a contiguous aligned zero area
306 * @map: The address to base the search on
307 * @size: The bitmap size in bits
308 * @start: The bitnumber to start searching at
309 * @nr: The number of zeroed bits we're looking for
310 * @align_mask: Alignment mask for zero area
312 * The @align_mask should be one less than a power of 2; the effect is that
313 * the bit offset of all zero areas this function finds is multiples of that
314 * power of 2. A @align_mask of 0 means no alignment is required.
316 unsigned long bitmap_find_next_zero_area(unsigned long *map,
320 unsigned long align_mask)
322 unsigned long index, end, i;
324 index = find_next_zero_bit(map, size, start);
326 /* Align allocation */
327 index = __ALIGN_MASK(index, align_mask);
332 i = find_next_bit(map, end, index);
341 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
342 * second version by Paul Jackson, third by Joe Korty.
346 #define nbits_to_hold_value(val) fls(val)
347 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
351 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
352 * @buf: byte buffer into which string is placed
353 * @buflen: reserved size of @buf, in bytes
354 * @maskp: pointer to bitmap to convert
355 * @nmaskbits: size of bitmap, in bits
357 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
358 * comma-separated sets of eight digits per set. Returns the number of
359 * characters which were written to *buf, excluding the trailing \0.
361 int bitmap_scnprintf(char *buf, unsigned int buflen,
362 const unsigned long *maskp, int nmaskbits)
364 int i, word, bit, len = 0;
366 const char *sep = "";
370 chunksz = nmaskbits & (CHUNKSZ - 1);
374 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
375 for (; i >= 0; i -= CHUNKSZ) {
376 chunkmask = ((1ULL << chunksz) - 1);
377 word = i / BITS_PER_LONG;
378 bit = i % BITS_PER_LONG;
379 val = (maskp[word] >> bit) & chunkmask;
380 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
389 * __bitmap_parse - convert an ASCII hex string into a bitmap.
390 * @buf: pointer to buffer containing string.
391 * @buflen: buffer size in bytes. If string is smaller than this
392 * then it must be terminated with a \0.
393 * @is_user: location of buffer, 0 indicates kernel space
394 * @maskp: pointer to bitmap array that will contain result.
395 * @nmaskbits: size of bitmap, in bits.
397 * Commas group hex digits into chunks. Each chunk defines exactly 32
398 * bits of the resultant bitmask. No chunk may specify a value larger
399 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
400 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
401 * characters and for grouping errors such as "1,,5", ",44", "," and "".
402 * Leading and trailing whitespace accepted, but not embedded whitespace.
404 int __bitmap_parse(const char *buf, unsigned int buflen,
405 int is_user, unsigned long *maskp,
408 int c, old_c, totaldigits, ndigits, nchunks, nbits;
410 const char *ubuf = (const char *)buf;
412 bitmap_zero(maskp, nmaskbits);
414 nchunks = nbits = totaldigits = c = 0;
418 /* Get the next chunk of the bitmap */
422 if (__get_user(c, ubuf++))
432 * If the last character was a space and the current
433 * character isn't '\0', we've got embedded whitespace.
434 * This is a no-no, so throw an error.
436 if (totaldigits && c && isspace(old_c))
439 /* A '\0' or a ',' signal the end of the chunk */
440 if (c == '\0' || c == ',')
447 * Make sure there are at least 4 free bits in 'chunk'.
448 * If not, this hexdigit will overflow 'chunk', so
451 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
454 chunk = (chunk << 4) | hex_to_bin(c);
455 ndigits++; totaldigits++;
459 if (nchunks == 0 && chunk == 0)
462 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
465 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
466 if (nbits > nmaskbits)
468 } while (buflen && c == ',');
474 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
476 * @ubuf: pointer to user buffer containing string.
477 * @ulen: buffer size in bytes. If string is smaller than this
478 * then it must be terminated with a \0.
479 * @maskp: pointer to bitmap array that will contain result.
480 * @nmaskbits: size of bitmap, in bits.
482 * Wrapper for __bitmap_parse(), providing it with user buffer.
484 * We cannot have this as an inline function in bitmap.h because it needs
485 * linux/uaccess.h to get the access_ok() declaration and this causes
486 * cyclic dependencies.
488 int bitmap_parse_user(const char __user *ubuf,
489 unsigned int ulen, unsigned long *maskp,
492 if (!access_ok(VERIFY_READ, ubuf, ulen))
494 return __bitmap_parse((const char __force *)ubuf,
495 ulen, 1, maskp, nmaskbits);
500 * bscnl_emit(buf, buflen, rbot, rtop, bp)
502 * Helper routine for bitmap_scnlistprintf(). Write decimal number
503 * or range to buf, suppressing output past buf+buflen, with optional
504 * comma-prefix. Return len of what was written to *buf, excluding the
507 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
510 len += scnprintf(buf + len, buflen - len, ",");
512 len += scnprintf(buf + len, buflen - len, "%d", rbot);
514 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
519 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
520 * @buf: byte buffer into which string is placed
521 * @buflen: reserved size of @buf, in bytes
522 * @maskp: pointer to bitmap to convert
523 * @nmaskbits: size of bitmap, in bits
525 * Output format is a comma-separated list of decimal numbers and
526 * ranges. Consecutively set bits are shown as two hyphen-separated
527 * decimal numbers, the smallest and largest bit numbers set in
528 * the range. Output format is compatible with the format
529 * accepted as input by bitmap_parselist().
531 * The return value is the number of characters which were written to *buf
532 * excluding the trailing '\0', as per ISO C99's scnprintf.
534 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
535 const unsigned long *maskp, int nmaskbits)
538 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
545 rbot = cur = find_first_bit(maskp, nmaskbits);
546 while (cur < nmaskbits) {
548 cur = find_next_bit(maskp, nmaskbits, cur+1);
549 if (cur >= nmaskbits || cur > rtop + 1) {
550 len = bscnl_emit(buf, buflen, rbot, rtop, len);
558 * __bitmap_parselist - convert list format ASCII string to bitmap
559 * @buf: read nul-terminated user string from this buffer
560 * @buflen: buffer size in bytes. If string is smaller than this
561 * then it must be terminated with a \0.
562 * @is_user: location of buffer, 0 indicates kernel space
563 * @maskp: write resulting mask here
564 * @nmaskbits: number of bits in mask to be written
566 * Input format is a comma-separated list of decimal numbers and
567 * ranges. Consecutively set bits are shown as two hyphen-separated
568 * decimal numbers, the smallest and largest bit numbers set in
571 * Returns 0 on success, -errno on invalid input strings.
573 * %-EINVAL: second number in range smaller than first
574 * %-EINVAL: invalid character in string
575 * %-ERANGE: bit number specified too large for mask
577 static int __bitmap_parselist(const char *buf, unsigned int buflen,
578 int is_user, unsigned long *maskp,
582 int c, old_c, totaldigits;
583 const char __user __force *ubuf = (const char __user __force *)buf;
584 int exp_digit, in_range;
587 bitmap_zero(maskp, nmaskbits);
593 /* Get the next cpu# or a range of cpu#'s */
597 if (__get_user(c, ubuf++))
606 * If the last character was a space and the current
607 * character isn't '\0', we've got embedded whitespace.
608 * This is a no-no, so throw an error.
610 if (totaldigits && c && isspace(old_c))
613 /* A '\0' or a ',' signal the end of a cpu# or range */
614 if (c == '\0' || c == ',')
618 if (exp_digit || in_range)
629 b = b * 10 + (c - '0');
643 } while (buflen && c == ',');
647 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
649 char *nl = strchr(bp, '\n');
657 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
662 * bitmap_parselist_user()
664 * @ubuf: pointer to user buffer containing string.
665 * @ulen: buffer size in bytes. If string is smaller than this
666 * then it must be terminated with a \0.
667 * @maskp: pointer to bitmap array that will contain result.
668 * @nmaskbits: size of bitmap, in bits.
670 * Wrapper for bitmap_parselist(), providing it with user buffer.
672 * We cannot have this as an inline function in bitmap.h because it needs
673 * linux/uaccess.h to get the access_ok() declaration and this causes
674 * cyclic dependencies.
676 int bitmap_parselist_user(const char __user *ubuf,
677 unsigned int ulen, unsigned long *maskp,
680 if (!access_ok(VERIFY_READ, ubuf, ulen))
682 return __bitmap_parselist((const char __force *)ubuf,
683 ulen, 1, maskp, nmaskbits);
688 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
689 * @buf: pointer to a bitmap
690 * @pos: a bit position in @buf (0 <= @pos < @bits)
691 * @bits: number of valid bit positions in @buf
693 * Map the bit at position @pos in @buf (of length @bits) to the
694 * ordinal of which set bit it is. If it is not set or if @pos
695 * is not a valid bit position, map to -1.
697 * If for example, just bits 4 through 7 are set in @buf, then @pos
698 * values 4 through 7 will get mapped to 0 through 3, respectively,
699 * and other @pos values will get mapped to 0. When @pos value 7
700 * gets mapped to (returns) @ord value 3 in this example, that means
701 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
703 * The bit positions 0 through @bits are valid positions in @buf.
705 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
709 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
712 i = find_first_bit(buf, bits);
715 i = find_next_bit(buf, bits, i + 1);
719 panic("%s: i %d != pos %d\n", __func__, i, pos);
725 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
726 * @buf: pointer to bitmap
727 * @ord: ordinal bit position (n-th set bit, n >= 0)
728 * @bits: number of valid bit positions in @buf
730 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
731 * Value of @ord should be in range 0 <= @ord < weight(buf), else
732 * results are undefined.
734 * If for example, just bits 4 through 7 are set in @buf, then @ord
735 * values 0 through 3 will get mapped to 4 through 7, respectively,
736 * and all other @ord values return undefined values. When @ord value 3
737 * gets mapped to (returns) @pos value 7 in this example, that means
738 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
740 * The bit positions 0 through @bits are valid positions in @buf.
742 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
746 if (ord >= 0 && ord < bits) {
749 for (i = find_first_bit(buf, bits);
751 i = find_next_bit(buf, bits, i + 1))
753 if (i < bits && ord == 0)
761 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
762 * @dst: remapped result
763 * @src: subset to be remapped
764 * @old: defines domain of map
765 * @new: defines range of map
766 * @bits: number of bits in each of these bitmaps
768 * Let @old and @new define a mapping of bit positions, such that
769 * whatever position is held by the n-th set bit in @old is mapped
770 * to the n-th set bit in @new. In the more general case, allowing
771 * for the possibility that the weight 'w' of @new is less than the
772 * weight of @old, map the position of the n-th set bit in @old to
773 * the position of the m-th set bit in @new, where m == n % w.
775 * If either of the @old and @new bitmaps are empty, or if @src and
776 * @dst point to the same location, then this routine copies @src
779 * The positions of unset bits in @old are mapped to themselves
780 * (the identify map).
782 * Apply the above specified mapping to @src, placing the result in
783 * @dst, clearing any bits previously set in @dst.
785 * For example, lets say that @old has bits 4 through 7 set, and
786 * @new has bits 12 through 15 set. This defines the mapping of bit
787 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
788 * bit positions unchanged. So if say @src comes into this routine
789 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
792 void bitmap_remap(unsigned long *dst, const unsigned long *src,
793 const unsigned long *old, const unsigned long *new,
798 if (dst == src) /* following doesn't handle inplace remaps */
800 bitmap_zero(dst, bits);
802 w = bitmap_weight(new, bits);
803 for_each_set_bit(oldbit, src, bits) {
804 int n = bitmap_pos_to_ord(old, oldbit, bits);
807 set_bit(oldbit, dst); /* identity map */
809 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
814 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
815 * @oldbit: bit position to be mapped
816 * @old: defines domain of map
817 * @new: defines range of map
818 * @bits: number of bits in each of these bitmaps
820 * Let @old and @new define a mapping of bit positions, such that
821 * whatever position is held by the n-th set bit in @old is mapped
822 * to the n-th set bit in @new. In the more general case, allowing
823 * for the possibility that the weight 'w' of @new is less than the
824 * weight of @old, map the position of the n-th set bit in @old to
825 * the position of the m-th set bit in @new, where m == n % w.
827 * The positions of unset bits in @old are mapped to themselves
828 * (the identify map).
830 * Apply the above specified mapping to bit position @oldbit, returning
831 * the new bit position.
833 * For example, lets say that @old has bits 4 through 7 set, and
834 * @new has bits 12 through 15 set. This defines the mapping of bit
835 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
836 * bit positions unchanged. So if say @oldbit is 5, then this routine
839 int bitmap_bitremap(int oldbit, const unsigned long *old,
840 const unsigned long *new, int bits)
842 int w = bitmap_weight(new, bits);
843 int n = bitmap_pos_to_ord(old, oldbit, bits);
847 return bitmap_ord_to_pos(new, n % w, bits);
851 * bitmap_onto - translate one bitmap relative to another
852 * @dst: resulting translated bitmap
853 * @orig: original untranslated bitmap
854 * @relmap: bitmap relative to which translated
855 * @bits: number of bits in each of these bitmaps
857 * Set the n-th bit of @dst iff there exists some m such that the
858 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
859 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
860 * (If you understood the previous sentence the first time your
861 * read it, you're overqualified for your current job.)
863 * In other words, @orig is mapped onto (surjectively) @dst,
864 * using the the map { <n, m> | the n-th bit of @relmap is the
865 * m-th set bit of @relmap }.
867 * Any set bits in @orig above bit number W, where W is the
868 * weight of (number of set bits in) @relmap are mapped nowhere.
869 * In particular, if for all bits m set in @orig, m >= W, then
870 * @dst will end up empty. In situations where the possibility
871 * of such an empty result is not desired, one way to avoid it is
872 * to use the bitmap_fold() operator, below, to first fold the
873 * @orig bitmap over itself so that all its set bits x are in the
874 * range 0 <= x < W. The bitmap_fold() operator does this by
875 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
877 * Example [1] for bitmap_onto():
878 * Let's say @relmap has bits 30-39 set, and @orig has bits
879 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
880 * @dst will have bits 31, 33, 35, 37 and 39 set.
882 * When bit 0 is set in @orig, it means turn on the bit in
883 * @dst corresponding to whatever is the first bit (if any)
884 * that is turned on in @relmap. Since bit 0 was off in the
885 * above example, we leave off that bit (bit 30) in @dst.
887 * When bit 1 is set in @orig (as in the above example), it
888 * means turn on the bit in @dst corresponding to whatever
889 * is the second bit that is turned on in @relmap. The second
890 * bit in @relmap that was turned on in the above example was
891 * bit 31, so we turned on bit 31 in @dst.
893 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
894 * because they were the 4th, 6th, 8th and 10th set bits
895 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
896 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
898 * When bit 11 is set in @orig, it means turn on the bit in
899 * @dst corresponding to whatever is the twelfth bit that is
900 * turned on in @relmap. In the above example, there were
901 * only ten bits turned on in @relmap (30..39), so that bit
902 * 11 was set in @orig had no affect on @dst.
904 * Example [2] for bitmap_fold() + bitmap_onto():
905 * Let's say @relmap has these ten bits set:
906 * 40 41 42 43 45 48 53 61 74 95
907 * (for the curious, that's 40 plus the first ten terms of the
908 * Fibonacci sequence.)
910 * Further lets say we use the following code, invoking
911 * bitmap_fold() then bitmap_onto, as suggested above to
912 * avoid the possitility of an empty @dst result:
914 * unsigned long *tmp; // a temporary bitmap's bits
916 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
917 * bitmap_onto(dst, tmp, relmap, bits);
919 * Then this table shows what various values of @dst would be, for
920 * various @orig's. I list the zero-based positions of each set bit.
921 * The tmp column shows the intermediate result, as computed by
922 * using bitmap_fold() to fold the @orig bitmap modulo ten
923 * (the weight of @relmap).
930 * 1 3 5 7 1 3 5 7 41 43 48 61
931 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
932 * 0 9 18 27 0 9 8 7 40 61 74 95
934 * 0 11 22 33 0 1 2 3 40 41 42 43
935 * 0 12 24 36 0 2 4 6 40 42 45 53
936 * 78 102 211 1 2 8 41 42 74 (*)
938 * (*) For these marked lines, if we hadn't first done bitmap_fold()
939 * into tmp, then the @dst result would have been empty.
941 * If either of @orig or @relmap is empty (no set bits), then @dst
942 * will be returned empty.
944 * If (as explained above) the only set bits in @orig are in positions
945 * m where m >= W, (where W is the weight of @relmap) then @dst will
946 * once again be returned empty.
948 * All bits in @dst not set by the above rule are cleared.
950 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
951 const unsigned long *relmap, int bits)
953 int n, m; /* same meaning as in above comment */
955 if (dst == orig) /* following doesn't handle inplace mappings */
957 bitmap_zero(dst, bits);
960 * The following code is a more efficient, but less
961 * obvious, equivalent to the loop:
962 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
963 * n = bitmap_ord_to_pos(orig, m, bits);
964 * if (test_bit(m, orig))
970 for_each_set_bit(n, relmap, bits) {
971 /* m == bitmap_pos_to_ord(relmap, n, bits) */
972 if (test_bit(m, orig))
979 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
980 * @dst: resulting smaller bitmap
981 * @orig: original larger bitmap
982 * @sz: specified size
983 * @bits: number of bits in each of these bitmaps
985 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
986 * Clear all other bits in @dst. See further the comment and
987 * Example [2] for bitmap_onto() for why and how to use this.
989 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
994 if (dst == orig) /* following doesn't handle inplace mappings */
996 bitmap_zero(dst, bits);
998 for_each_set_bit(oldbit, orig, bits)
999 set_bit(oldbit % sz, dst);
1003 * Common code for bitmap_*_region() routines.
1004 * bitmap: array of unsigned longs corresponding to the bitmap
1005 * pos: the beginning of the region
1006 * order: region size (log base 2 of number of bits)
1007 * reg_op: operation(s) to perform on that region of bitmap
1009 * Can set, verify and/or release a region of bits in a bitmap,
1010 * depending on which combination of REG_OP_* flag bits is set.
1012 * A region of a bitmap is a sequence of bits in the bitmap, of
1013 * some size '1 << order' (a power of two), aligned to that same
1014 * '1 << order' power of two.
1016 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1017 * Returns 0 in all other cases and reg_ops.
1021 REG_OP_ISFREE, /* true if region is all zero bits */
1022 REG_OP_ALLOC, /* set all bits in region */
1023 REG_OP_RELEASE, /* clear all bits in region */
1026 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1028 int nbits_reg; /* number of bits in region */
1029 int index; /* index first long of region in bitmap */
1030 int offset; /* bit offset region in bitmap[index] */
1031 int nlongs_reg; /* num longs spanned by region in bitmap */
1032 int nbitsinlong; /* num bits of region in each spanned long */
1033 unsigned long mask; /* bitmask for one long of region */
1034 int i; /* scans bitmap by longs */
1035 int ret = 0; /* return value */
1038 * Either nlongs_reg == 1 (for small orders that fit in one long)
1039 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1041 nbits_reg = 1 << order;
1042 index = pos / BITS_PER_LONG;
1043 offset = pos - (index * BITS_PER_LONG);
1044 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1045 nbitsinlong = MIN(nbits_reg, BITS_PER_LONG);
1048 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1049 * overflows if nbitsinlong == BITS_PER_LONG.
1051 mask = (1UL << (nbitsinlong - 1));
1057 for (i = 0; i < nlongs_reg; i++) {
1058 if (bitmap[index + i] & mask)
1061 ret = 1; /* all bits in region free (zero) */
1065 for (i = 0; i < nlongs_reg; i++)
1066 bitmap[index + i] |= mask;
1069 case REG_OP_RELEASE:
1070 for (i = 0; i < nlongs_reg; i++)
1071 bitmap[index + i] &= ~mask;
1079 * bitmap_find_free_region - find a contiguous aligned mem region
1080 * @bitmap: array of unsigned longs corresponding to the bitmap
1081 * @bits: number of bits in the bitmap
1082 * @order: region size (log base 2 of number of bits) to find
1084 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1085 * allocate them (set them to one). Only consider regions of length
1086 * a power (@order) of two, aligned to that power of two, which
1087 * makes the search algorithm much faster.
1089 * Return the bit offset in bitmap of the allocated region,
1090 * or -errno on failure.
1092 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1094 int pos, end; /* scans bitmap by regions of size order */
1096 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1097 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1099 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1106 * bitmap_release_region - release allocated bitmap region
1107 * @bitmap: array of unsigned longs corresponding to the bitmap
1108 * @pos: beginning of bit region to release
1109 * @order: region size (log base 2 of number of bits) to release
1111 * This is the complement to __bitmap_find_free_region() and releases
1112 * the found region (by clearing it in the bitmap).
1116 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1118 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1122 * bitmap_allocate_region - allocate bitmap region
1123 * @bitmap: array of unsigned longs corresponding to the bitmap
1124 * @pos: beginning of bit region to allocate
1125 * @order: region size (log base 2 of number of bits) to allocate
1127 * Allocate (set bits in) a specified region of a bitmap.
1129 * Return 0 on success, or %-EBUSY if specified region wasn't
1130 * free (not all bits were zero).
1132 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1134 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1136 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1142 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1143 * @dst: destination buffer
1144 * @src: bitmap to copy
1145 * @nbits: number of bits in the bitmap
1147 * Require nbits % BITS_PER_LONG == 0.
1149 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1151 unsigned long *d = dst;
1154 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1155 if (BITS_PER_LONG == 64)
1156 d[i] = cpu_to_le64(src[i]);
1158 d[i] = cpu_to_le32(src[i]);