3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <rbtree_augmented.h>
27 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29 * 1) A node is either red or black
30 * 2) The root is black
31 * 3) All leaves (NULL) are black
32 * 4) Both children of every red node are black
33 * 5) Every simple path from root to leaves contains the same number
36 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37 * consecutive red nodes in a path and every red node is therefore followed by
38 * a black. So if B is the number of black nodes on every simple path (as per
39 * 5), then the longest possible path due to 4 is 2B.
41 * We shall indicate color with case, where black nodes are uppercase and red
42 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
43 * parentheses and have some accompanying text comment.
47 * Notes on lockless lookups:
49 * All stores to the tree structure (rb_left and rb_right) must be done using
50 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
51 * tree structure as seen in program order.
53 * These two requirements will allow lockless iteration of the tree -- not
54 * correct iteration mind you, tree rotations are not atomic so a lookup might
55 * miss entire subtrees.
57 * But they do guarantee that any such traversal will only see valid elements
58 * and that it will indeed complete -- does not get stuck in a loop.
60 * It also guarantees that if the lookup returns an element it is the 'correct'
61 * one. But not returning an element does _NOT_ mean it's not present.
65 * Stores to __rb_parent_color are not important for simple lookups so those
66 * are left undone as of now. Nor did I check for loops involving parent
70 static inline void rb_set_black(struct rb_node *rb)
72 rb->__rb_parent_color |= RB_BLACK;
75 static inline struct rb_node *rb_red_parent(struct rb_node *red)
77 return (struct rb_node *)red->__rb_parent_color;
81 * Helper function for rotations:
82 * - old's parent and color get assigned to new
83 * - old gets assigned new as a parent and 'color' as a color.
86 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
87 struct rb_root *root, int color)
89 struct rb_node *parent = rb_parent(old);
90 new->__rb_parent_color = old->__rb_parent_color;
91 rb_set_parent_color(old, new, color);
92 __rb_change_child(old, new, parent, root);
95 static __always_inline void
96 __rb_insert(struct rb_node *node, struct rb_root *root,
97 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
99 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
103 * Loop invariant: node is red
105 * If there is a black parent, we are done.
106 * Otherwise, take some corrective action as we don't
107 * want a red root or two consecutive red nodes.
110 rb_set_parent_color(node, NULL, RB_BLACK);
112 } else if (rb_is_black(parent))
115 gparent = rb_red_parent(parent);
117 tmp = gparent->rb_right;
118 if (parent != tmp) { /* parent == gparent->rb_left */
119 if (tmp && rb_is_red(tmp)) {
121 * Case 1 - color flips
129 * However, since g's parent might be red, and
130 * 4) does not allow this, we need to recurse
133 rb_set_parent_color(tmp, gparent, RB_BLACK);
134 rb_set_parent_color(parent, gparent, RB_BLACK);
136 parent = rb_parent(node);
137 rb_set_parent_color(node, parent, RB_RED);
141 tmp = parent->rb_right;
144 * Case 2 - left rotate at parent
152 * This still leaves us in violation of 4), the
153 * continuation into Case 3 will fix that.
156 WRITE_ONCE(parent->rb_right, tmp);
157 WRITE_ONCE(node->rb_left, parent);
159 rb_set_parent_color(tmp, parent,
161 rb_set_parent_color(parent, node, RB_RED);
162 augment_rotate(parent, node);
164 tmp = node->rb_right;
168 * Case 3 - right rotate at gparent
176 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
177 WRITE_ONCE(parent->rb_right, gparent);
179 rb_set_parent_color(tmp, gparent, RB_BLACK);
180 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
181 augment_rotate(gparent, parent);
184 tmp = gparent->rb_left;
185 if (tmp && rb_is_red(tmp)) {
186 /* Case 1 - color flips */
187 rb_set_parent_color(tmp, gparent, RB_BLACK);
188 rb_set_parent_color(parent, gparent, RB_BLACK);
190 parent = rb_parent(node);
191 rb_set_parent_color(node, parent, RB_RED);
195 tmp = parent->rb_left;
197 /* Case 2 - right rotate at parent */
198 tmp = node->rb_right;
199 WRITE_ONCE(parent->rb_left, tmp);
200 WRITE_ONCE(node->rb_right, parent);
202 rb_set_parent_color(tmp, parent,
204 rb_set_parent_color(parent, node, RB_RED);
205 augment_rotate(parent, node);
210 /* Case 3 - left rotate at gparent */
211 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
212 WRITE_ONCE(parent->rb_left, gparent);
214 rb_set_parent_color(tmp, gparent, RB_BLACK);
215 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
216 augment_rotate(gparent, parent);
223 * Inline version for rb_erase() use - we want to be able to inline
224 * and eliminate the dummy_rotate callback there
226 static __always_inline void
227 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
228 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
235 * - node is black (or NULL on first iteration)
236 * - node is not the root (parent is not NULL)
237 * - All leaf paths going through parent and node have a
238 * black node count that is 1 lower than other leaf paths.
240 sibling = parent->rb_right;
241 if (node != sibling) { /* node == parent->rb_left */
242 if (rb_is_red(sibling)) {
244 * Case 1 - left rotate at parent
252 tmp1 = sibling->rb_left;
253 WRITE_ONCE(parent->rb_right, tmp1);
254 WRITE_ONCE(sibling->rb_left, parent);
255 rb_set_parent_color(tmp1, parent, RB_BLACK);
256 __rb_rotate_set_parents(parent, sibling, root,
258 augment_rotate(parent, sibling);
261 tmp1 = sibling->rb_right;
262 if (!tmp1 || rb_is_black(tmp1)) {
263 tmp2 = sibling->rb_left;
264 if (!tmp2 || rb_is_black(tmp2)) {
266 * Case 2 - sibling color flip
267 * (p could be either color here)
275 * This leaves us violating 5) which
276 * can be fixed by flipping p to black
277 * if it was red, or by recursing at p.
278 * p is red when coming from Case 1.
280 rb_set_parent_color(sibling, parent,
282 if (rb_is_red(parent))
283 rb_set_black(parent);
286 parent = rb_parent(node);
293 * Case 3 - right rotate at sibling
294 * (p could be either color here)
304 tmp1 = tmp2->rb_right;
305 WRITE_ONCE(sibling->rb_left, tmp1);
306 WRITE_ONCE(tmp2->rb_right, sibling);
307 WRITE_ONCE(parent->rb_right, tmp2);
309 rb_set_parent_color(tmp1, sibling,
311 augment_rotate(sibling, tmp2);
316 * Case 4 - left rotate at parent + color flips
317 * (p and sl could be either color here.
318 * After rotation, p becomes black, s acquires
319 * p's color, and sl keeps its color)
327 tmp2 = sibling->rb_left;
328 WRITE_ONCE(parent->rb_right, tmp2);
329 WRITE_ONCE(sibling->rb_left, parent);
330 rb_set_parent_color(tmp1, sibling, RB_BLACK);
332 rb_set_parent(tmp2, parent);
333 __rb_rotate_set_parents(parent, sibling, root,
335 augment_rotate(parent, sibling);
338 sibling = parent->rb_left;
339 if (rb_is_red(sibling)) {
340 /* Case 1 - right rotate at parent */
341 tmp1 = sibling->rb_right;
342 WRITE_ONCE(parent->rb_left, tmp1);
343 WRITE_ONCE(sibling->rb_right, parent);
344 rb_set_parent_color(tmp1, parent, RB_BLACK);
345 __rb_rotate_set_parents(parent, sibling, root,
347 augment_rotate(parent, sibling);
350 tmp1 = sibling->rb_left;
351 if (!tmp1 || rb_is_black(tmp1)) {
352 tmp2 = sibling->rb_right;
353 if (!tmp2 || rb_is_black(tmp2)) {
354 /* Case 2 - sibling color flip */
355 rb_set_parent_color(sibling, parent,
357 if (rb_is_red(parent))
358 rb_set_black(parent);
361 parent = rb_parent(node);
367 /* Case 3 - right rotate at sibling */
368 tmp1 = tmp2->rb_left;
369 WRITE_ONCE(sibling->rb_right, tmp1);
370 WRITE_ONCE(tmp2->rb_left, sibling);
371 WRITE_ONCE(parent->rb_left, tmp2);
373 rb_set_parent_color(tmp1, sibling,
375 augment_rotate(sibling, tmp2);
379 /* Case 4 - left rotate at parent + color flips */
380 tmp2 = sibling->rb_right;
381 WRITE_ONCE(parent->rb_left, tmp2);
382 WRITE_ONCE(sibling->rb_right, parent);
383 rb_set_parent_color(tmp1, sibling, RB_BLACK);
385 rb_set_parent(tmp2, parent);
386 __rb_rotate_set_parents(parent, sibling, root,
388 augment_rotate(parent, sibling);
394 /* Non-inline version for rb_erase_augmented() use */
395 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
396 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
398 ____rb_erase_color(parent, root, augment_rotate);
402 * Non-augmented rbtree manipulation functions.
404 * We use dummy augmented callbacks here, and have the compiler optimize them
405 * out of the rb_insert_color() and rb_erase() function definitions.
408 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
409 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
410 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
412 static const struct rb_augment_callbacks dummy_callbacks = {
413 dummy_propagate, dummy_copy, dummy_rotate
416 void rb_insert_color(struct rb_node *node, struct rb_root *root)
418 __rb_insert(node, root, dummy_rotate);
421 void rb_erase(struct rb_node *node, struct rb_root *root)
423 struct rb_node *rebalance;
424 rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
426 ____rb_erase_color(rebalance, root, dummy_rotate);
430 * Augmented rbtree manipulation functions.
432 * This instantiates the same __always_inline functions as in the non-augmented
433 * case, but this time with user-defined callbacks.
436 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
437 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
439 __rb_insert(node, root, augment_rotate);
443 * This function returns the first node (in sort order) of the tree.
445 struct rb_node *rb_first(const struct rb_root *root)
457 struct rb_node *rb_last(const struct rb_root *root)
469 struct rb_node *rb_next(const struct rb_node *node)
471 struct rb_node *parent;
473 if (RB_EMPTY_NODE(node))
477 * If we have a right-hand child, go down and then left as far
480 if (node->rb_right) {
481 node = node->rb_right;
482 while (node->rb_left)
484 return (struct rb_node *)node;
488 * No right-hand children. Everything down and left is smaller than us,
489 * so any 'next' node must be in the general direction of our parent.
490 * Go up the tree; any time the ancestor is a right-hand child of its
491 * parent, keep going up. First time it's a left-hand child of its
492 * parent, said parent is our 'next' node.
494 while ((parent = rb_parent(node)) && node == parent->rb_right)
500 struct rb_node *rb_prev(const struct rb_node *node)
502 struct rb_node *parent;
504 if (RB_EMPTY_NODE(node))
508 * If we have a left-hand child, go down and then right as far
512 node = node->rb_left;
513 while (node->rb_right)
515 return (struct rb_node *)node;
519 * No left-hand children. Go up till we find an ancestor which
520 * is a right-hand child of its parent.
522 while ((parent = rb_parent(node)) && node == parent->rb_left)
528 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
529 struct rb_root *root)
531 struct rb_node *parent = rb_parent(victim);
533 /* Copy the pointers/colour from the victim to the replacement */
536 /* Set the surrounding nodes to point to the replacement */
538 rb_set_parent(victim->rb_left, new);
539 if (victim->rb_right)
540 rb_set_parent(victim->rb_right, new);
541 __rb_change_child(victim, new, parent, root);
544 void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
545 struct rb_root *root)
547 struct rb_node *parent = rb_parent(victim);
549 /* Copy the pointers/colour from the victim to the replacement */
552 /* Set the surrounding nodes to point to the replacement */
554 rb_set_parent(victim->rb_left, new);
555 if (victim->rb_right)
556 rb_set_parent(victim->rb_right, new);
558 /* Set the parent's pointer to the new node last after an RCU barrier
559 * so that the pointers onwards are seen to be set correctly when doing
560 * an RCU walk over the tree.
562 __rb_change_child_rcu(victim, new, parent, root);
565 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
569 node = node->rb_left;
570 else if (node->rb_right)
571 node = node->rb_right;
573 return (struct rb_node *)node;
577 struct rb_node *rb_next_postorder(const struct rb_node *node)
579 const struct rb_node *parent;
582 parent = rb_parent(node);
584 /* If we're sitting on node, we've already seen our children */
585 if (parent && node == parent->rb_left && parent->rb_right) {
586 /* If we are the parent's left node, go to the parent's right
587 * node then all the way down to the left */
588 return rb_left_deepest_node(parent->rb_right);
590 /* Otherwise we are the parent's right node, and the parent
592 return (struct rb_node *)parent;
595 struct rb_node *rb_first_postorder(const struct rb_root *root)
600 return rb_left_deepest_node(root->rb_node);