3 * vmx.c - The Intel VT-x driver for Dune
5 * This file is derived from Linux KVM VT-x support.
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This modified version is simpler because it avoids the following
14 * features that are not requirements for Dune:
15 * * Real-mode emulation
16 * * Nested VT-x support
17 * * I/O hardware emulation
18 * * Any of the more esoteric X86 features and registers
19 * * KVM-specific functionality
21 * In essence we provide only the minimum functionality needed to run
22 * a process in vmx non-root mode rather than the full hardware emulation
23 * needed to support an entire OS.
25 * This driver is a research prototype and as such has the following
28 * FIXME: Backward compatability is currently a non-goal, and only recent
29 * full-featured (EPT, PCID, VPID, etc.) Intel hardware is supported by this
32 * FIXME: Eventually we should handle concurrent user's of VT-x more
33 * gracefully instead of requiring exclusive access. This would allow
34 * Dune to interoperate with KVM and other HV solutions.
36 * FIXME: We need to support hotplugged physical CPUs.
39 * Adam Belay <abelay@stanford.edu>
43 * Yep, it's confusing. This is in part because the vmcs is used twice, for two different things.
44 * You're left with the feeling that they got part way through and realized they had to have one for
46 * 1) your CPU is going to be capable of running VMs, and you need state for that.
48 * 2) you're about to start a guest, and you need state for that.
50 * So there is get cpu set up to be able to run VMs stuff, and now
51 * let's start a guest stuff. In Akaros, CPUs will always be set up
52 * to run a VM if that is possible. Processes can flip themselves into
53 * a VM and that will require another VMCS.
55 * So: at kernel startup time, the SMP boot stuff calls
56 * k/a/x86/vmm/vmm.c:vmm_init, which calls arch-dependent bits, which
57 * in the case of this file is intel_vmm_init. That does some code
58 * that sets up stuff for ALL sockets, based on the capabilities of
59 * the socket it runs on. If any cpu supports vmx, it assumes they all
60 * do. That's a realistic assumption. So the call_function_all is kind
61 * of stupid, really; it could just see what's on the current cpu and
62 * assume it's on all. HOWEVER: there are systems in the wilde that
63 * can run VMs on some but not all CPUs, due to BIOS mistakes, so we
64 * might as well allow for the chance that wel'll only all VMMCPs on a
65 * subset (not implemented yet however). So: probe all CPUs, get a
66 * count of how many support VMX and, for now, assume they all do
69 * Next, call setup_vmcs_config to configure the GLOBAL vmcs_config struct,
70 * which contains all the naughty bits settings for all the cpus that can run a VM.
71 * Realistically, all VMX-capable cpus in a system will have identical configurations.
72 * So: 0 or more cpus can run VMX; all cpus which can run VMX will have the same configuration.
74 * configure the msr_bitmap. This is the bitmap of MSRs which the
75 * guest can manipulate. Currently, we only allow GS and FS base.
77 * Reserve bit 0 in the vpid bitmap as guests can not use that
79 * Set up the what we call the vmxarea. The vmxarea is per-cpu, not
80 * per-guest. Once set up, it is left alone. The ONLY think we set in
81 * there is the revision area. The VMX is page-sized per cpu and
82 * page-aligned. Note that it can be smaller, but why bother? We know
83 * the max size and alightment, and it's convenient.
85 * Now that it is set up, enable vmx on all cpus. This involves
86 * testing VMXE in cr4, to see if we've been here before (TODO: delete
87 * this test), then testing MSR_IA32_FEATURE_CONTROL to see if we can
88 * do a VM, the setting the VMXE in cr4, calling vmxon (does a vmxon
89 * instruction), and syncing vpid's and ept's. Now the CPU is ready
93 * We divide this into two things: vmm_proc_init and vm_run.
94 * Currently, on Intel, vmm_proc_init does nothing.
96 * vm_run is really complicated. It is called with a coreid, rip, rsp,
97 * cr3, and flags. On intel, it calls vmx_launch. vmx_launch is set
98 * up for a few test cases. If rip is 1, it sets the guest rip to
99 * a function which will deref 0 and should exit with failure 2. If rip is 0,
100 * it calls an infinite loop in the guest.
102 * The sequence of operations:
106 * disable irqs (required or you can't enter the VM)
113 * See if the current cpu has a vcpu. If so, and is the same as the vcpu we want,
114 * vmcs_load(vcpu->vmcs) -- i.e. issue a VMPTRLD.
116 * If it's not the same, see if the vcpu thinks it is on the core. If it is not, call
117 * __vmx_get_cpu_helper on the other cpu, to free it up. Else vmcs_clear the one
118 * attached to this cpu. Then vmcs_load the vmcs for vcpu on this this cpu,
119 * call __vmx_setup_cpu, mark this vcpu as being attached to this cpu, done.
121 * vmx_run_vcpu this one gets messy, mainly because it's a giant wad
122 * of inline assembly with embedded CPP crap. I suspect we'll want to
123 * un-inline it someday, but maybe not. It's called with a vcpu
124 * struct from which it loads guest state, and to which it stores
125 * non-virtualized host state. It issues a vmlaunch or vmresume
126 * instruction depending, and on return, it evaluates if things the
127 * launch/resume had an error in that operation. Note this is NOT the
128 * same as an error while in the virtual machine; this is an error in
129 * startup due to misconfiguration. Depending on whatis returned it's
130 * either a failed vm startup or an exit for lots of many reasons.
134 /* basically: only rename those globals that might conflict
135 * with existing names. Leave all else the same.
136 * this code is more modern than the other code, yet still
137 * well encapsulated, it seems.
145 #include <sys/queue.h>
153 #include <arch/types.h>
160 #include "cpufeature.h"
162 #define currentcpu (&per_cpu_info[core_id()])
164 static unsigned long *msr_bitmap;
166 int x86_ept_pte_fix_ups = 0;
168 struct vmx_capability vmx_capability;
169 struct vmcs_config vmcs_config;
171 static int autoloaded_msrs[] = {
178 static char *cr_access_type[] = {
185 static char *cr_gpr[] = {
186 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
187 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
190 static int guest_cr_num[16] = {
200 -1, -1, -1, -1, -1, -1, -1
202 __always_inline unsigned long vmcs_readl(unsigned long field);
203 /* See section 24-3 of The Good Book */
204 void show_cr_access(uint64_t val) {
205 int crnr = val & 0xf;
206 int type = (val>>4) & 3;
207 int reg = (val >> 11) & 0xf;
208 printk("%s: %d: ", cr_access_type[type], crnr);
210 printk("%s", cr_gpr[reg]);
211 if (guest_cr_num[crnr] > -1) {
212 printk(": 0x%x", vmcs_readl(guest_cr_num[crnr]));
218 void ept_flush(uint64_t eptp)
220 ept_sync_context(eptp);
223 static void vmcs_clear(struct vmcs *vmcs)
225 uint64_t phys_addr = PADDR(vmcs);
228 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
229 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
232 printk("vmclear fail: %p/%llx\n",
236 static void vmcs_load(struct vmcs *vmcs)
238 uint64_t phys_addr = PADDR(vmcs);
241 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
242 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
245 printk("vmptrld %p/%llx failed\n",
249 /* Returns the paddr pointer of the current CPU's VMCS region, or -1 if none. */
250 static physaddr_t vmcs_get_current(void)
252 physaddr_t vmcs_paddr;
253 /* RAX contains the addr of the location to store the VMCS pointer. The
254 * compiler doesn't know the ASM will deref that pointer, hence the =m */
255 asm volatile (ASM_VMX_VMPTRST_RAX : "=m"(vmcs_paddr) : "a"(&vmcs_paddr));
259 __always_inline unsigned long vmcs_readl(unsigned long field)
263 asm volatile (ASM_VMX_VMREAD_RDX_RAX
264 : "=a"(value) : "d"(field) : "cc");
268 __always_inline uint16_t vmcs_read16(unsigned long field)
270 return vmcs_readl(field);
273 static __always_inline uint32_t vmcs_read32(unsigned long field)
275 return vmcs_readl(field);
278 static __always_inline uint64_t vmcs_read64(unsigned long field)
280 return vmcs_readl(field);
283 void vmwrite_error(unsigned long field, unsigned long value)
285 printk("vmwrite error: reg %lx value %lx (err %d)\n",
286 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
289 void vmcs_writel(unsigned long field, unsigned long value)
293 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
294 : "=q"(error) : "a"(value), "d"(field) : "cc");
296 vmwrite_error(field, value);
299 static void vmcs_write16(unsigned long field, uint16_t value)
301 vmcs_writel(field, value);
304 static void vmcs_write32(unsigned long field, uint32_t value)
306 vmcs_writel(field, value);
309 static void vmcs_write64(unsigned long field, uint64_t value)
311 vmcs_writel(field, value);
315 * A note on Things You Can't Make Up.
317 * "George, you can type this shit, but you can't say it" -- Harrison Ford
319 * There are 5 VMCS 32-bit words that control guest permissions. If
320 * you set these correctly, you've got a guest that will behave. If
321 * you get even one bit wrong, you've got a guest that will chew your
322 * leg off. Some bits must be 1, some must be 0, and some can be set
323 * either way. To add to the fun, the docs are sort of a docudrama or,
324 * as the quote goes, "interesting if true."
326 * To determine what bit can be set in what VMCS 32-bit control word,
327 * there are 5 corresponding 64-bit MSRs. And, to make it even more
328 * fun, the standard set of MSRs have errors in them, i.e. report
329 * incorrect values, for legacy reasons, and so you are supposed to
330 * "look around" to another set, which have correct bits in
331 * them. There are four such 'correct' registers, and they have _TRUE_
332 * in the names as you can see below. We test for the value of VMCS
333 * control bits in the _TRUE_ registers if possible. The fifth
334 * register, CPU Secondary Exec Controls, which came later, needs no
337 * For each MSR, the high 32 bits tell you what bits can be "1" by a
338 * "1" in that position; the low 32 bits tell you what bit can be "0"
339 * by a "0" in that position. So, for each of 32 bits in a given VMCS
340 * control word, there is a pair of bits in an MSR that tells you what
341 * values it can take. The two bits, of which there are *four*
342 * combinations, describe the *three* possible operations on a
343 * bit. The two bits, taken together, form an untruth table: There are
344 * three possibilities: The VMCS bit can be set to 0 or 1, or it can
345 * only be 0, or only 1. The fourth combination is not supposed to
348 * So: there is the 1 bit from the upper 32 bits of the msr.
349 * If this bit is set, then the bit can be 1. If clear, it can not be 1.
351 * Then there is the 0 bit, from low 32 bits. If clear, the VMCS bit
352 * can be 0. If 1, the VMCS bit can not be 0.
354 * SO, let's call the 1 bit R1, and the 0 bit R0, we have:
357 * 1 0 -> can be 1, can be 0
358 * 0 1 -> can not be 1, can not be 0. --> JACKPOT! Not seen yet.
359 * 1 1 -> must be one.
361 * It's also pretty hard to know what you can and can't set, and
362 * that's led to inadvertant opening of permissions at times. Because
363 * of this complexity we've decided on the following: the driver must
364 * define EVERY bit, UNIQUELY, for each of the 5 registers, that it wants
365 * set. Further, for any bit that's settable, the driver must specify
366 * a setting; for any bit that's reserved, the driver settings must
367 * match that bit. If there are reserved bits we don't specify, that's
368 * ok; we'll take them as is.
370 * We use a set-means-set, and set-means-clear model, i.e. we use a
371 * 32-bit word to contain the bits we want to be 1, indicated by one;
372 * and another 32-bit word in which a bit we want to be 0 is indicated
373 * by a 1. This allows us to easily create masks of all bits we're
374 * going to set, for example.
376 * We have two 32-bit numbers for each 32-bit VMCS field: bits we want
377 * set and bits we want clear. If you read the MSR for that field,
378 * compute the reserved 0 and 1 settings, and | them together, they
379 * need to result in 0xffffffff. You can see that we can create other
380 * tests for conflicts (i.e. overlap).
382 * At this point, I've tested check_vmx_controls in every way
383 * possible, beause I kept screwing the bitfields up. You'll get a nice
384 * error it won't work at all, which is what we want: a
385 * failure-prone setup, where even errors that might result in correct
386 * values are caught -- "right answer, wrong method, zero credit." If there's
387 * weirdness in the bits, we don't want to run.
390 static bool check_vmxec_controls(struct vmxec const *v, bool have_true_msr,
394 uint32_t vmx_msr_low, vmx_msr_high;
395 uint32_t reserved_0, reserved_1, changeable_bits;
398 rdmsr(v->truemsr, vmx_msr_low, vmx_msr_high);
400 rdmsr(v->msr, vmx_msr_low, vmx_msr_high);
402 if (vmx_msr_low & ~vmx_msr_high)
403 warn("JACKPOT: Conflicting VMX ec ctls for %s, high 0x%08x low 0x%08x",
404 v->name, vmx_msr_high, vmx_msr_low);
406 reserved_0 = (~vmx_msr_low) & (~vmx_msr_high);
407 reserved_1 = vmx_msr_low & vmx_msr_high;
408 changeable_bits = ~(reserved_0 | reserved_1);
411 * this is very much as follows:
412 * accept the things I cannot change,
413 * change the things I can,
414 * know the difference.
417 /* Conflict. Don't try to both set and reset bits. */
418 if (v->set_to_0 & v->set_to_1) {
419 printk("%s: set to 0 (0x%x) and set to 1 (0x%x) overlap: 0x%x\n",
420 v->name, v->set_to_0, v->set_to_1, v->set_to_0 & v->set_to_1);
425 if (((v->set_to_0 | v->set_to_1) & changeable_bits) !=
427 printk("%s: Need to cover 0x%x and have 0x%x,0x%x\n",
428 v->name, changeable_bits, v->set_to_0, v->set_to_1);
432 if ((v->set_to_0 | v->set_to_1 | reserved_0 | reserved_1) !=
434 printk("%s: incomplete coverage: have 0x%x, want 0x%x\n",
435 v->name, v->set_to_0 | v->set_to_1 |
436 reserved_0 | reserved_1, 0xffffffff);
440 /* Don't try to change bits that can't be changed. */
441 if ((v->set_to_0 & (reserved_0 | changeable_bits)) != v->set_to_0) {
442 printk("%s: set to 0 (0x%x) can't be done\n", v->name,
447 if ((v->set_to_1 & (reserved_1 | changeable_bits)) != v->set_to_1) {
448 printk("%s: set to 1 (0x%x) can't be done\n",
449 v->name, v->set_to_1);
453 /* If there's been any error at all, spill our guts and return. */
455 printk("%s: vmx_msr_high 0x%x, vmx_msr_low 0x%x, ",
456 v->name, vmx_msr_high, vmx_msr_low);
457 printk("set_to_1 0x%x,set_to_0 0x%x,reserved_1 0x%x",
458 v->set_to_1, v->set_to_0, reserved_1);
459 printk(" reserved_0 0x%x", reserved_0);
460 printk(" changeable_bits 0x%x\n", changeable_bits);
464 *result = v->set_to_1 | reserved_1;
466 printd("%s: check_vmxec_controls succeeds with result 0x%x\n",
472 * We're trying to make this as readable as possible. Realistically, it will
473 * rarely if ever change, if the past is any guide.
475 static const struct vmxec pbec = {
476 .name = "Pin Based Execution Controls",
477 .msr = MSR_IA32_VMX_PINBASED_CTLS,
478 .truemsr = MSR_IA32_VMX_TRUE_PINBASED_CTLS,
480 .set_to_1 = (PIN_BASED_EXT_INTR_MASK |
481 PIN_BASED_NMI_EXITING |
482 PIN_BASED_VIRTUAL_NMIS),
484 .set_to_0 = (PIN_BASED_VMX_PREEMPTION_TIMER |
485 PIN_BASED_POSTED_INTR),
488 static const struct vmxec cbec = {
489 .name = "CPU Based Execution Controls",
490 .msr = MSR_IA32_VMX_PROCBASED_CTLS,
491 .truemsr = MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
493 .set_to_1 = (CPU_BASED_HLT_EXITING |
494 CPU_BASED_INVLPG_EXITING |
495 CPU_BASED_MWAIT_EXITING |
496 CPU_BASED_RDPMC_EXITING |
497 CPU_BASED_CR8_LOAD_EXITING |
498 CPU_BASED_CR8_STORE_EXITING |
499 CPU_BASED_MOV_DR_EXITING |
500 CPU_BASED_UNCOND_IO_EXITING |
501 CPU_BASED_USE_MSR_BITMAPS |
502 CPU_BASED_MONITOR_EXITING |
503 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS),
505 .set_to_0 = (CPU_BASED_VIRTUAL_INTR_PENDING |
506 CPU_BASED_USE_TSC_OFFSETING |
507 CPU_BASED_RDTSC_EXITING |
508 CPU_BASED_CR3_LOAD_EXITING |
509 CPU_BASED_CR3_STORE_EXITING |
510 CPU_BASED_TPR_SHADOW |
511 CPU_BASED_VIRTUAL_NMI_PENDING |
512 CPU_BASED_MONITOR_TRAP |
513 CPU_BASED_PAUSE_EXITING |
514 CPU_BASED_USE_IO_BITMAPS),
517 static const struct vmxec cb2ec = {
518 .name = "CPU Based 2nd Execution Controls",
519 .msr = MSR_IA32_VMX_PROCBASED_CTLS2,
520 .truemsr = MSR_IA32_VMX_PROCBASED_CTLS2,
522 .set_to_1 = (SECONDARY_EXEC_ENABLE_EPT |
523 SECONDARY_EXEC_WBINVD_EXITING),
525 .set_to_0 = (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
526 SECONDARY_EXEC_DESCRIPTOR_EXITING |
527 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
528 SECONDARY_EXEC_ENABLE_VPID |
529 SECONDARY_EXEC_UNRESTRICTED_GUEST |
530 SECONDARY_EXEC_APIC_REGISTER_VIRT |
531 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
532 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
533 SECONDARY_EXEC_RDRAND_EXITING |
534 SECONDARY_EXEC_ENABLE_INVPCID |
535 SECONDARY_EXEC_ENABLE_VMFUNC |
536 SECONDARY_EXEC_SHADOW_VMCS |
537 SECONDARY_EXEC_RDSEED_EXITING |
539 /* TODO: re enable this via a "Want" struct
540 member at some point */
541 SECONDARY_EXEC_RDTSCP |
542 SECONDARY_ENABLE_XSAV_RESTORE)
545 static const struct vmxec vmentry = {
546 .name = "VMENTRY controls",
547 .msr = MSR_IA32_VMX_ENTRY_CTLS,
548 .truemsr = MSR_IA32_VMX_TRUE_ENTRY_CTLS,
549 /* exact order from vmx.h; only the first two are enabled. */
551 .set_to_1 = (VM_ENTRY_LOAD_DEBUG_CONTROLS | /* can't set to 0 */
552 VM_ENTRY_LOAD_IA32_EFER |
553 VM_ENTRY_IA32E_MODE),
555 .set_to_0 = (VM_ENTRY_SMM |
556 VM_ENTRY_DEACT_DUAL_MONITOR |
557 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
558 VM_ENTRY_LOAD_IA32_PAT),
561 static const struct vmxec vmexit = {
562 .name = "VMEXIT controls",
563 .msr = MSR_IA32_VMX_EXIT_CTLS,
564 .truemsr = MSR_IA32_VMX_TRUE_EXIT_CTLS,
566 .set_to_1 = (VM_EXIT_SAVE_DEBUG_CONTROLS | /* can't set to 0 */
567 VM_EXIT_SAVE_IA32_EFER |
568 VM_EXIT_LOAD_IA32_EFER |
569 VM_EXIT_HOST_ADDR_SPACE_SIZE), /* 64 bit */
571 .set_to_0 = (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
572 VM_EXIT_ACK_INTR_ON_EXIT |
573 VM_EXIT_SAVE_IA32_PAT |
574 VM_EXIT_LOAD_IA32_PAT |
575 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER),
578 static void setup_vmcs_config(void *p)
581 struct vmcs_config *vmcs_conf = &vmcs_config;
582 uint32_t vmx_msr_high;
584 bool have_true_msrs = false;
589 vmx_msr = read_msr(MSR_IA32_VMX_BASIC);
590 vmx_msr_high = vmx_msr >> 32;
593 * If bit 55 (VMX_BASIC_HAVE_TRUE_MSRS) is set, then we
594 * can go for the true MSRs. Else, we ask you to get a better CPU.
596 if (vmx_msr & VMX_BASIC_TRUE_CTLS) {
597 have_true_msrs = true;
598 printd("Running with TRUE MSRs\n");
600 printk("Running with non-TRUE MSRs, this is old hardware\n");
604 * Don't worry that one or more of these might fail and leave
605 * the VMCS in some kind of incomplete state. If one of these
606 * fails, the caller is going to discard the VMCS.
607 * It is written this way to ensure we get results of all tests and avoid
610 ok = check_vmxec_controls(&pbec, have_true_msrs,
611 &vmcs_conf->pin_based_exec_ctrl);
612 ok = check_vmxec_controls(&cbec, have_true_msrs,
613 &vmcs_conf->cpu_based_exec_ctrl) && ok;
614 /* Only check cb2ec if we're still ok, o/w we may GPF */
615 ok = ok && check_vmxec_controls(&cb2ec, have_true_msrs,
616 &vmcs_conf->cpu_based_2nd_exec_ctrl);
617 ok = check_vmxec_controls(&vmentry, have_true_msrs,
618 &vmcs_conf->vmentry_ctrl) && ok;
619 ok = check_vmxec_controls(&vmexit, have_true_msrs,
620 &vmcs_conf->vmexit_ctrl) && ok;
622 printk("vmxexec controls is no good.\n");
626 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
627 if ((vmx_msr_high & 0x1fff) > PGSIZE) {
628 printk("vmx_msr_high & 0x1fff) is 0x%x, > PAGE_SIZE 0x%x\n",
629 vmx_msr_high & 0x1fff, PGSIZE);
633 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
634 if (vmx_msr & VMX_BASIC_64) {
635 printk("VMX doesn't support 64 bit width!\n");
639 if (((vmx_msr & VMX_BASIC_MEM_TYPE_MASK) >> VMX_BASIC_MEM_TYPE_SHIFT)
640 != VMX_BASIC_MEM_TYPE_WB) {
641 printk("VMX doesn't support WB memory for VMCS accesses!\n");
645 vmcs_conf->size = vmx_msr_high & 0x1fff;
646 vmcs_conf->order = LOG2_UP(nr_pages(vmcs_config.size));
647 vmcs_conf->revision_id = (uint32_t)vmx_msr;
649 /* Read in the caps for runtime checks. This MSR is only available if
650 * secondary controls and ept or vpid is on, which we check earlier */
651 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, vmx_capability.ept, vmx_capability.vpid);
656 static struct vmcs *__vmx_alloc_vmcs(int node)
660 vmcs = get_cont_pages_node(node, vmcs_config.order, KMALLOC_WAIT);
663 memset(vmcs, 0, vmcs_config.size);
664 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
665 printd("%d: set rev id %d\n", core_id(), vmcs->revision_id);
670 * vmx_alloc_vmcs - allocates a VMCS region
672 * NOTE: Assumes the new region will be used by the current CPU.
674 * Returns a valid VMCS region.
676 static struct vmcs *vmx_alloc_vmcs(void)
678 return __vmx_alloc_vmcs(numa_id());
682 * vmx_free_vmcs - frees a VMCS region
684 static void vmx_free_vmcs(struct vmcs *vmcs)
686 //free_pages((unsigned long)vmcs, vmcs_config.order);
690 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
691 * will not change in the lifetime of the guest.
692 * Note that host-state that does change is set elsewhere. E.g., host-state
693 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
695 static void vmx_setup_constant_host_state(void)
697 uint32_t low32, high32;
701 vmcs_writel(HOST_CR0, rcr0() & ~X86_CR0_TS); /* 22.2.3 */
702 vmcs_writel(HOST_CR4, rcr4()); /* 22.2.3, 22.2.5 */
703 vmcs_writel(HOST_CR3, rcr3()); /* 22.2.3 */
705 vmcs_write16(HOST_CS_SELECTOR, GD_KT); /* 22.2.4 */
706 vmcs_write16(HOST_DS_SELECTOR, GD_KD); /* 22.2.4 */
707 vmcs_write16(HOST_ES_SELECTOR, GD_KD); /* 22.2.4 */
708 vmcs_write16(HOST_SS_SELECTOR, GD_KD); /* 22.2.4 */
709 vmcs_write16(HOST_TR_SELECTOR, GD_TSS); /* 22.2.4 */
711 native_store_idt(&dt);
712 vmcs_writel(HOST_IDTR_BASE, dt.pd_base); /* 22.2.4 */
714 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
715 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
717 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
718 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
719 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
720 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
722 rdmsr(MSR_EFER, low32, high32);
723 vmcs_write32(HOST_IA32_EFER, low32);
725 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
726 rdmsr(MSR_IA32_CR_PAT, low32, high32);
727 vmcs_write64(HOST_IA32_PAT, low32 | ((uint64_t) high32 << 32));
730 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
731 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
733 /* TODO: This (at least gs) is per cpu */
734 rdmsrl(MSR_FS_BASE, tmpl);
735 vmcs_writel(HOST_FS_BASE, tmpl); /* 22.2.4 */
736 rdmsrl(MSR_GS_BASE, tmpl);
737 vmcs_writel(HOST_GS_BASE, tmpl); /* 22.2.4 */
740 static inline uint16_t vmx_read_ldt(void)
743 asm("sldt %0" : "=g"(ldt));
747 static unsigned long segment_base(uint16_t selector)
749 pseudodesc_t *gdt = ¤tcpu->host_gdt;
750 struct desc_struct *d;
751 unsigned long table_base;
754 if (!(selector & ~3)) {
758 table_base = gdt->pd_base;
760 if (selector & 4) { /* from ldt */
761 uint16_t ldt_selector = vmx_read_ldt();
763 if (!(ldt_selector & ~3)) {
767 table_base = segment_base(ldt_selector);
769 d = (struct desc_struct *)(table_base + (selector & ~7));
770 v = get_desc_base(d);
771 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
772 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
776 static inline unsigned long vmx_read_tr_base(void)
779 asm("str %0" : "=g"(tr));
780 return segment_base(tr);
783 static void __vmx_setup_cpu(void)
785 pseudodesc_t *gdt = ¤tcpu->host_gdt;
786 unsigned long sysenter_esp;
790 * Linux uses per-cpu TSS and GDT, so set these when switching
793 vmcs_writel(HOST_TR_BASE, vmx_read_tr_base()); /* 22.2.4 */
794 vmcs_writel(HOST_GDTR_BASE, gdt->pd_base); /* 22.2.4 */
796 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
797 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
799 rdmsrl(MSR_FS_BASE, tmpl);
800 vmcs_writel(HOST_FS_BASE, tmpl); /* 22.2.4 */
801 rdmsrl(MSR_GS_BASE, tmpl);
802 vmcs_writel(HOST_GS_BASE, tmpl); /* 22.2.4 */
806 * vmx_get_cpu - called before using a cpu
807 * @vcpu: VCPU that will be loaded.
809 * Disables preemption. Call vmx_put_cpu() when finished.
811 static void vmx_get_cpu(struct vmx_vcpu *vcpu)
813 int cur_cpu = core_id();
814 handler_wrapper_t *w;
816 if (currentcpu->local_vcpu)
817 panic("get_cpu: currentcpu->localvcpu was non-NULL");
818 if (currentcpu->local_vcpu != vcpu) {
819 currentcpu->local_vcpu = vcpu;
821 if (vcpu->cpu != cur_cpu) {
822 if (vcpu->cpu >= 0) {
823 panic("vcpu->cpu is not -1, it's %d\n", vcpu->cpu);
825 vmcs_clear(vcpu->vmcs);
827 ept_sync_context(vcpu_get_eptp(vcpu));
830 vmcs_load(vcpu->vmcs);
834 vmcs_load(vcpu->vmcs);
840 * vmx_put_cpu - called after using a cpu
841 * @vcpu: VCPU that was loaded.
843 static void vmx_put_cpu(struct vmx_vcpu *vcpu)
845 if (core_id() != vcpu->cpu)
846 panic("%s: core_id() %d != vcpu->cpu %d\n",
847 __func__, core_id(), vcpu->cpu);
849 if (currentcpu->local_vcpu != vcpu)
850 panic("vmx_put_cpu: asked to clear something not ours");
852 ept_sync_context(vcpu_get_eptp(vcpu));
853 vmcs_clear(vcpu->vmcs);
855 currentcpu->local_vcpu = NULL;
860 * vmx_dump_cpu - prints the CPU state
861 * @vcpu: VCPU to print
863 static void vmx_dump_cpu(struct vmx_vcpu *vcpu)
869 vcpu->regs.tf_rip = vmcs_readl(GUEST_RIP);
870 vcpu->regs.tf_rsp = vmcs_readl(GUEST_RSP);
871 flags = vmcs_readl(GUEST_RFLAGS);
874 printk("--- Begin VCPU Dump ---\n");
875 printk("CPU %d VPID %d\n", vcpu->cpu, 0);
876 printk("RIP 0x%016lx RFLAGS 0x%08lx\n",
877 vcpu->regs.tf_rip, flags);
878 printk("RAX 0x%016lx RCX 0x%016lx\n",
879 vcpu->regs.tf_rax, vcpu->regs.tf_rcx);
880 printk("RDX 0x%016lx RBX 0x%016lx\n",
881 vcpu->regs.tf_rdx, vcpu->regs.tf_rbx);
882 printk("RSP 0x%016lx RBP 0x%016lx\n",
883 vcpu->regs.tf_rsp, vcpu->regs.tf_rbp);
884 printk("RSI 0x%016lx RDI 0x%016lx\n",
885 vcpu->regs.tf_rsi, vcpu->regs.tf_rdi);
886 printk("R8 0x%016lx R9 0x%016lx\n",
887 vcpu->regs.tf_r8, vcpu->regs.tf_r9);
888 printk("R10 0x%016lx R11 0x%016lx\n",
889 vcpu->regs.tf_r10, vcpu->regs.tf_r11);
890 printk("R12 0x%016lx R13 0x%016lx\n",
891 vcpu->regs.tf_r12, vcpu->regs.tf_r13);
892 printk("R14 0x%016lx R15 0x%016lx\n",
893 vcpu->regs.tf_r14, vcpu->regs.tf_r15);
894 printk("--- End VCPU Dump ---\n");
898 uint64_t construct_eptp(physaddr_t root_hpa)
902 /* set WB memory and 4 levels of walk. we checked these in ept_init */
903 eptp = VMX_EPT_MEM_TYPE_WB |
904 (VMX_EPT_GAW_4_LVL << VMX_EPT_GAW_EPTP_SHIFT);
905 if (cpu_has_vmx_ept_ad_bits())
906 eptp |= VMX_EPT_AD_ENABLE_BIT;
907 eptp |= (root_hpa & PAGE_MASK);
913 * vmx_setup_initial_guest_state - configures the initial state of guest registers
915 static void vmx_setup_initial_guest_state(void)
918 unsigned long cr4 = X86_CR4_PAE | X86_CR4_VMXE | X86_CR4_OSXMMEXCPT |
919 X86_CR4_PGE | X86_CR4_OSFXSR;
920 uint32_t protected_mode = X86_CR0_PG | X86_CR0_PE;
923 if (boot_cpu_has(X86_FEATURE_PCID))
924 cr4 |= X86_CR4_PCIDE;
925 if (boot_cpu_has(X86_FEATURE_OSXSAVE))
926 cr4 |= X86_CR4_OSXSAVE;
928 /* we almost certainly have this */
929 /* we'll go sour if we don't. */
930 if (1) //boot_cpu_has(X86_FEATURE_FSGSBASE))
931 cr4 |= X86_CR4_RDWRGSFS;
933 /* configure control and data registers */
934 vmcs_writel(GUEST_CR0, protected_mode | X86_CR0_WP |
935 X86_CR0_MP | X86_CR0_ET | X86_CR0_NE);
936 vmcs_writel(CR0_READ_SHADOW, protected_mode | X86_CR0_WP |
937 X86_CR0_MP | X86_CR0_ET | X86_CR0_NE);
938 vmcs_writel(GUEST_CR3, rcr3());
939 vmcs_writel(GUEST_CR4, cr4);
940 vmcs_writel(CR4_READ_SHADOW, cr4);
941 vmcs_writel(GUEST_IA32_EFER, EFER_LME | EFER_LMA |
942 EFER_SCE /*| EFER_FFXSR*/);
943 vmcs_writel(GUEST_GDTR_BASE, 0);
944 vmcs_writel(GUEST_GDTR_LIMIT, 0);
945 vmcs_writel(GUEST_IDTR_BASE, 0);
946 vmcs_writel(GUEST_IDTR_LIMIT, 0);
947 vmcs_writel(GUEST_RIP, 0xdeadbeef);
948 vmcs_writel(GUEST_RSP, 0xdeadbeef);
949 vmcs_writel(GUEST_RFLAGS, 0x02);
950 vmcs_writel(GUEST_DR7, 0);
952 /* guest segment bases */
953 vmcs_writel(GUEST_CS_BASE, 0);
954 vmcs_writel(GUEST_DS_BASE, 0);
955 vmcs_writel(GUEST_ES_BASE, 0);
956 vmcs_writel(GUEST_GS_BASE, 0);
957 vmcs_writel(GUEST_SS_BASE, 0);
958 rdmsrl(MSR_FS_BASE, tmpl);
959 vmcs_writel(GUEST_FS_BASE, tmpl);
961 /* guest segment access rights */
962 vmcs_writel(GUEST_CS_AR_BYTES, 0xA09B);
963 vmcs_writel(GUEST_DS_AR_BYTES, 0xA093);
964 vmcs_writel(GUEST_ES_AR_BYTES, 0xA093);
965 vmcs_writel(GUEST_FS_AR_BYTES, 0xA093);
966 vmcs_writel(GUEST_GS_AR_BYTES, 0xA093);
967 vmcs_writel(GUEST_SS_AR_BYTES, 0xA093);
969 /* guest segment limits */
970 vmcs_write32(GUEST_CS_LIMIT, 0xFFFFFFFF);
971 vmcs_write32(GUEST_DS_LIMIT, 0xFFFFFFFF);
972 vmcs_write32(GUEST_ES_LIMIT, 0xFFFFFFFF);
973 vmcs_write32(GUEST_FS_LIMIT, 0xFFFFFFFF);
974 vmcs_write32(GUEST_GS_LIMIT, 0xFFFFFFFF);
975 vmcs_write32(GUEST_SS_LIMIT, 0xFFFFFFFF);
977 /* configure segment selectors */
978 vmcs_write16(GUEST_CS_SELECTOR, 0);
979 vmcs_write16(GUEST_DS_SELECTOR, 0);
980 vmcs_write16(GUEST_ES_SELECTOR, 0);
981 vmcs_write16(GUEST_FS_SELECTOR, 0);
982 vmcs_write16(GUEST_GS_SELECTOR, 0);
983 vmcs_write16(GUEST_SS_SELECTOR, 0);
984 vmcs_write16(GUEST_TR_SELECTOR, 0);
987 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
988 vmcs_writel(GUEST_LDTR_AR_BYTES, 0x0082);
989 vmcs_writel(GUEST_LDTR_BASE, 0);
990 vmcs_writel(GUEST_LDTR_LIMIT, 0);
993 vmcs_writel(GUEST_TR_BASE, 0);
994 vmcs_writel(GUEST_TR_AR_BYTES, 0x0080 | AR_TYPE_BUSY_64_TSS);
995 vmcs_writel(GUEST_TR_LIMIT, 0xff);
997 /* initialize sysenter */
998 vmcs_write32(GUEST_SYSENTER_CS, 0);
999 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1000 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1002 /* other random initialization */
1003 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1004 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1005 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1006 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1007 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1010 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, uint32_t msr)
1012 int f = sizeof(unsigned long);
1014 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1015 * have the write-low and read-high bitmap offsets the wrong way round.
1016 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1018 if (msr <= 0x1fff) {
1019 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
1020 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
1021 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1023 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
1024 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
1028 static void vcpu_print_autoloads(struct vmx_vcpu *vcpu)
1030 struct vmx_msr_entry *e;
1031 int sz = sizeof(autoloaded_msrs) / sizeof(*autoloaded_msrs);
1032 printk("Host Autoloads:\n-------------------\n");
1033 for (int i = 0; i < sz; i++) {
1034 e = &vcpu->msr_autoload.host[i];
1035 printk("\tMSR 0x%08x: %p\n", e->index, e->value);
1037 printk("Guest Autoloads:\n-------------------\n");
1038 for (int i = 0; i < sz; i++) {
1039 e = &vcpu->msr_autoload.guest[i];
1040 printk("\tMSR 0x%08x %p\n", e->index, e->value);
1044 static void dumpmsrs(void)
1053 MSR_IA32_PEBS_ENABLE
1055 for(i = 0; i < ARRAY_SIZE(set); i++) {
1056 printk("%p: %p\n", set[i], read_msr(set[i]));
1058 printk("core id %d\n", core_id());
1061 /* emulated msr. For now, an msr value and a pointer to a helper that
1062 * performs the requested operation.
1066 int (*f)(struct vmx_vcpu *vcpu, struct emmsr *, uint32_t, uint32_t);
1071 int emsr_misc_enable(struct vmx_vcpu *vcpu, struct emmsr *, uint32_t, uint32_t);
1072 int emsr_readonly(struct vmx_vcpu *vcpu, struct emmsr *, uint32_t, uint32_t);
1073 int emsr_fakewrite(struct vmx_vcpu *vcpu, struct emmsr *, uint32_t, uint32_t);
1075 struct emmsr emmsrs[] = {
1076 {MSR_IA32_MISC_ENABLE, emsr_misc_enable},
1077 {MSR_IA32_UCODE_REV, emsr_fakewrite},
1080 #define set_low32(hi,lo) (((hi) & 0xffffffff00000000ULL ) | (lo))
1081 int emsr_misc_enable(struct vmx_vcpu *vcpu, struct emmsr *msr, uint32_t opcode, uint32_t qual)
1084 rdmsr(MSR_IA32_MISC_ENABLE, eax, edx);
1085 /* we just let them read the misc msr for now. */
1086 if (opcode == EXIT_REASON_MSR_READ) {
1087 vcpu->regs.tf_rax = set_low32(vcpu->regs.tf_rax, eax);
1088 vcpu->regs.tf_rdx = set_low32(vcpu->regs.tf_rdx, edx);
1091 /* if they are writing what is already written, that's ok. */
1092 if (((uint32_t)vcpu->regs.tf_rax == eax) && ((uint32_t)vcpu->regs.tf_rdx == edx))
1095 return SHUTDOWN_UNHANDLED_EXIT_REASON;
1098 /* return what's there. Let them think they are writing it if they are not changing anything. */
1099 int emsr_readonly(struct vmx_vcpu *vcpu, struct emmsr *msr, uint32_t opcode, uint32_t qual)
1102 rdmsr((uint32_t)vcpu->regs.tf_rcx, eax, edx);
1103 /* we just let them read the misc msr for now. */
1104 if (opcode == EXIT_REASON_MSR_READ) {
1105 vcpu->regs.tf_rax = set_low32(vcpu->regs.tf_rax, eax);
1106 vcpu->regs.tf_rdx = set_low32(vcpu->regs.tf_rdx, edx);
1109 /* if they are writing what is already written, that's ok. */
1110 if (((uint32_t)vcpu->regs.tf_rax == eax) && ((uint32_t)vcpu->regs.tf_rdx == edx))
1112 printk("%s write 0x%lx failed: msr is (0x%lx,0x%lx) and wanted (0x%lx,0x%lx)\n",
1113 __func__, vcpu->regs.tf_rcx, edx, eax, (uint32_t)vcpu->regs.tf_rdx, (uint32_t)vcpu->regs.tf_rax);
1115 return SHUTDOWN_UNHANDLED_EXIT_REASON;
1118 /* pretend to write it, but don't write it. */
1119 int emsr_fakewrite(struct vmx_vcpu *vcpu, struct emmsr *msr, uint32_t opcode, uint32_t qual)
1122 if (! msr->written) {
1123 rdmsr(MSR_IA32_MISC_ENABLE, eax, edx);
1128 /* we just let them read the misc msr for now. */
1129 if (opcode == EXIT_REASON_MSR_READ) {
1130 vcpu->regs.tf_rax = set_low32(vcpu->regs.tf_rax, eax);
1131 vcpu->regs.tf_rdx = set_low32(vcpu->regs.tf_rdx, edx);
1134 /* if they are writing what is already written, that's ok. */
1135 if (((uint32_t)vcpu->regs.tf_rax == eax) && ((uint32_t)vcpu->regs.tf_rdx == edx))
1137 msr->edx = vcpu->regs.tf_rdx;
1138 msr->eax = vcpu->regs.tf_rax;
1139 msr->written = true;
1145 msrio(struct vmx_vcpu *vcpu, uint32_t opcode, uint32_t qual)
1148 for (i = 0; i < ARRAY_SIZE(emmsrs); i++) {
1149 if (emmsrs[i].reg != vcpu->regs.tf_rcx)
1151 return emmsrs[i].f(vcpu, &emmsrs[i], opcode, qual);
1153 printk("msrio for 0x%lx failed\n", vcpu->regs.tf_rcx);
1154 return SHUTDOWN_UNHANDLED_EXIT_REASON;
1156 /* Notes on autoloading. We can't autoload FS_BASE or GS_BASE, according to the
1157 * manual, but that's because they are automatically saved and restored when all
1158 * of the other architectural registers are saved and restored, such as cs, ds,
1159 * es, and other fun things. (See 24.4.1). We need to make sure we don't
1160 * accidentally intercept them too, since they are magically autloaded..
1162 * We'll need to be careful of any MSR we neither autoload nor intercept
1163 * whenever we vmenter/vmexit, and we intercept by default.
1165 * Other MSRs, such as MSR_IA32_PEBS_ENABLE only work on certain architectures
1166 * only work on certain architectures. */
1167 static void setup_msr(struct vmx_vcpu *vcpu)
1169 struct vmx_msr_entry *e;
1170 int sz = sizeof(autoloaded_msrs) / sizeof(*autoloaded_msrs);
1173 static_assert((sizeof(autoloaded_msrs) / sizeof(*autoloaded_msrs)) <=
1176 vcpu->msr_autoload.nr = sz;
1178 /* Since PADDR(msr_bitmap) is non-zero, and the bitmap is all 0xff, we now
1179 * intercept all MSRs */
1180 vmcs_write64(MSR_BITMAP, PADDR(msr_bitmap));
1182 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vcpu->msr_autoload.nr);
1183 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vcpu->msr_autoload.nr);
1184 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vcpu->msr_autoload.nr);
1186 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, PADDR(vcpu->msr_autoload.host));
1187 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, PADDR(vcpu->msr_autoload.guest));
1188 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, PADDR(vcpu->msr_autoload.guest));
1190 for (i = 0; i < sz; i++) {
1193 e = &vcpu->msr_autoload.host[i];
1194 e->index = autoloaded_msrs[i];
1195 __vmx_disable_intercept_for_msr(msr_bitmap, e->index);
1196 rdmsrl(e->index, val);
1198 printk("host index %p val %p\n", e->index, e->value);
1200 e = &vcpu->msr_autoload.guest[i];
1201 e->index = autoloaded_msrs[i];
1202 e->value = 0xDEADBEEF;
1203 printk("guest index %p val %p\n", e->index, e->value);
1208 * vmx_setup_vmcs - configures the vmcs with starting parameters
1210 static void vmx_setup_vmcs(struct vmx_vcpu *vcpu)
1212 vmcs_write16(VIRTUAL_PROCESSOR_ID, 0);
1213 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1216 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1217 vmcs_config.pin_based_exec_ctrl);
1219 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1220 vmcs_config.cpu_based_exec_ctrl);
1222 if (cpu_has_secondary_exec_ctrls()) {
1223 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
1224 vmcs_config.cpu_based_2nd_exec_ctrl);
1227 vmcs_write64(EPT_POINTER, vcpu_get_eptp(vcpu));
1229 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1230 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1231 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1235 vmcs_config.vmentry_ctrl |= VM_ENTRY_IA32E_MODE;
1237 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1238 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1240 vmcs_writel(CR0_GUEST_HOST_MASK, 0); // ~0ul);
1241 vmcs_writel(CR4_GUEST_HOST_MASK, 0); // ~0ul);
1243 //kvm_write_tsc(&vmx->vcpu, 0);
1244 vmcs_writel(TSC_OFFSET, 0);
1246 vmx_setup_constant_host_state();
1250 * vmx_create_vcpu - allocates and initializes a new virtual cpu
1252 * Returns: A new VCPU structure
1254 struct vmx_vcpu *vmx_create_vcpu(struct proc *p)
1256 struct vmx_vcpu *vcpu = kmalloc(sizeof(struct vmx_vcpu), KMALLOC_WAIT);
1261 memset(vcpu, 0, sizeof(*vcpu));
1263 vcpu->proc = p; /* uncounted (weak) reference */
1264 vcpu->vmcs = vmx_alloc_vmcs();
1265 printd("%d: vcpu->vmcs is %p\n", core_id(), vcpu->vmcs);
1272 vmx_setup_vmcs(vcpu);
1273 vmx_setup_initial_guest_state();
1284 * vmx_destroy_vcpu - destroys and frees an existing virtual cpu
1285 * @vcpu: the VCPU to destroy
1287 void vmx_destroy_vcpu(struct vmx_vcpu *vcpu)
1289 vmx_free_vmcs(vcpu->vmcs);
1294 * vmx_current_vcpu - returns a pointer to the vcpu for the current task.
1296 * In the contexts where this is used the vcpu pointer should never be NULL.
1298 static inline struct vmx_vcpu *vmx_current_vcpu(void)
1300 struct vmx_vcpu *vcpu = currentcpu->local_vcpu;
1302 panic("Core has no vcpu!");
1307 * vmx_run_vcpu - launches the CPU into non-root mode
1308 * We ONLY support 64-bit guests.
1309 * @vcpu: the vmx instance to launch
1311 static int vmx_run_vcpu(struct vmx_vcpu *vcpu)
1314 /* Store host registers */
1315 "push %%rdx; push %%rbp;"
1316 "push %%rcx \n\t" /* placeholder for guest rcx */
1318 "cmp %%rsp, %c[host_rsp](%0) \n\t"
1320 "mov %%rsp, %c[host_rsp](%0) \n\t"
1321 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1323 /* Reload cr2 if changed */
1324 "mov %c[cr2](%0), %%rax \n\t"
1325 "mov %%cr2, %%rdx \n\t"
1326 "cmp %%rax, %%rdx \n\t"
1328 "mov %%rax, %%cr2 \n\t"
1330 /* Check if vmlaunch of vmresume is needed */
1331 "cmpl $0, %c[launched](%0) \n\t"
1332 /* Load guest registers. Don't clobber flags. */
1333 "mov %c[rax](%0), %%rax \n\t"
1334 "mov %c[rbx](%0), %%rbx \n\t"
1335 "mov %c[rdx](%0), %%rdx \n\t"
1336 "mov %c[rsi](%0), %%rsi \n\t"
1337 "mov %c[rdi](%0), %%rdi \n\t"
1338 "mov %c[rbp](%0), %%rbp \n\t"
1339 "mov %c[r8](%0), %%r8 \n\t"
1340 "mov %c[r9](%0), %%r9 \n\t"
1341 "mov %c[r10](%0), %%r10 \n\t"
1342 "mov %c[r11](%0), %%r11 \n\t"
1343 "mov %c[r12](%0), %%r12 \n\t"
1344 "mov %c[r13](%0), %%r13 \n\t"
1345 "mov %c[r14](%0), %%r14 \n\t"
1346 "mov %c[r15](%0), %%r15 \n\t"
1347 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (ecx) */
1349 /* Enter guest mode */
1350 "jne .Llaunched \n\t"
1351 ASM_VMX_VMLAUNCH "\n\t"
1352 "jmp .Lkvm_vmx_return \n\t"
1353 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
1354 ".Lkvm_vmx_return: "
1355 /* Save guest registers, load host registers, keep flags */
1356 "mov %0, %c[wordsize](%%rsp) \n\t"
1358 "mov %%rax, %c[rax](%0) \n\t"
1359 "mov %%rbx, %c[rbx](%0) \n\t"
1360 "popq %c[rcx](%0) \n\t"
1361 "mov %%rdx, %c[rdx](%0) \n\t"
1362 "mov %%rsi, %c[rsi](%0) \n\t"
1363 "mov %%rdi, %c[rdi](%0) \n\t"
1364 "mov %%rbp, %c[rbp](%0) \n\t"
1365 "mov %%r8, %c[r8](%0) \n\t"
1366 "mov %%r9, %c[r9](%0) \n\t"
1367 "mov %%r10, %c[r10](%0) \n\t"
1368 "mov %%r11, %c[r11](%0) \n\t"
1369 "mov %%r12, %c[r12](%0) \n\t"
1370 "mov %%r13, %c[r13](%0) \n\t"
1371 "mov %%r14, %c[r14](%0) \n\t"
1372 "mov %%r15, %c[r15](%0) \n\t"
1373 "mov %%rax, %%r10 \n\t"
1374 "mov %%rdx, %%r11 \n\t"
1376 "mov %%cr2, %%rax \n\t"
1377 "mov %%rax, %c[cr2](%0) \n\t"
1379 "pop %%rbp; pop %%rdx \n\t"
1380 "setbe %c[fail](%0) \n\t"
1381 "mov $" STRINGIFY(GD_UD) ", %%rax \n\t"
1382 "mov %%rax, %%ds \n\t"
1383 "mov %%rax, %%es \n\t"
1384 : : "c"(vcpu), "d"((unsigned long)HOST_RSP),
1385 [launched]"i"(offsetof(struct vmx_vcpu, launched)),
1386 [fail]"i"(offsetof(struct vmx_vcpu, fail)),
1387 [host_rsp]"i"(offsetof(struct vmx_vcpu, host_rsp)),
1388 [rax]"i"(offsetof(struct vmx_vcpu, regs.tf_rax)),
1389 [rbx]"i"(offsetof(struct vmx_vcpu, regs.tf_rbx)),
1390 [rcx]"i"(offsetof(struct vmx_vcpu, regs.tf_rcx)),
1391 [rdx]"i"(offsetof(struct vmx_vcpu, regs.tf_rdx)),
1392 [rsi]"i"(offsetof(struct vmx_vcpu, regs.tf_rsi)),
1393 [rdi]"i"(offsetof(struct vmx_vcpu, regs.tf_rdi)),
1394 [rbp]"i"(offsetof(struct vmx_vcpu, regs.tf_rbp)),
1395 [r8]"i"(offsetof(struct vmx_vcpu, regs.tf_r8)),
1396 [r9]"i"(offsetof(struct vmx_vcpu, regs.tf_r9)),
1397 [r10]"i"(offsetof(struct vmx_vcpu, regs.tf_r10)),
1398 [r11]"i"(offsetof(struct vmx_vcpu, regs.tf_r11)),
1399 [r12]"i"(offsetof(struct vmx_vcpu, regs.tf_r12)),
1400 [r13]"i"(offsetof(struct vmx_vcpu, regs.tf_r13)),
1401 [r14]"i"(offsetof(struct vmx_vcpu, regs.tf_r14)),
1402 [r15]"i"(offsetof(struct vmx_vcpu, regs.tf_r15)),
1403 [cr2]"i"(offsetof(struct vmx_vcpu, cr2)),
1404 [wordsize]"i"(sizeof(unsigned long))
1406 , "rax", "rbx", "rdi", "rsi"
1407 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
1410 vcpu->regs.tf_rip = vmcs_readl(GUEST_RIP);
1411 vcpu->regs.tf_rsp = vmcs_readl(GUEST_RSP);
1412 printd("RETURN. ip %016lx sp %016lx cr2 %016lx\n",
1413 vcpu->regs.tf_rip, vcpu->regs.tf_rsp, vcpu->cr2);
1414 /* FIXME: do we need to set up other flags? */
1415 vcpu->regs.tf_rflags = (vmcs_readl(GUEST_RFLAGS) & 0xFF) |
1416 X86_EFLAGS_IF | 0x2;
1418 vcpu->regs.tf_cs = GD_UT;
1419 vcpu->regs.tf_ss = GD_UD;
1424 printk("failure detected (err %x)\n",
1425 vmcs_read32(VM_INSTRUCTION_ERROR));
1426 return VMX_EXIT_REASONS_FAILED_VMENTRY;
1429 return vmcs_read32(VM_EXIT_REASON);
1432 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1433 vmx_complete_atomic_exit(vmx);
1434 vmx_recover_nmi_blocking(vmx);
1435 vmx_complete_interrupts(vmx);
1439 static void vmx_step_instruction(void)
1441 vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) +
1442 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
1445 static int vmx_handle_ept_violation(struct vmx_vcpu *vcpu)
1447 unsigned long gva, gpa;
1448 int exit_qual, ret = -1;
1452 exit_qual = vmcs_read32(EXIT_QUALIFICATION);
1453 gva = vmcs_readl(GUEST_LINEAR_ADDRESS);
1454 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
1459 prot |= exit_qual & VMX_EPT_FAULT_READ ? PROT_READ : 0;
1460 prot |= exit_qual & VMX_EPT_FAULT_WRITE ? PROT_WRITE : 0;
1461 prot |= exit_qual & VMX_EPT_FAULT_INS ? PROT_EXEC : 0;
1462 ret = handle_page_fault(current, gpa, prot);
1465 printk("EPT page fault failure %d, GPA: %p, GVA: %p\n", ret, gpa, gva);
1472 static void vmx_handle_cpuid(struct vmx_vcpu *vcpu)
1474 unsigned int eax, ebx, ecx, edx;
1476 eax = vcpu->regs.tf_rax;
1477 ecx = vcpu->regs.tf_rcx;
1478 cpuid(eax, ecx, &eax, &ebx, &ecx, &edx);
1479 vcpu->regs.tf_rax = eax;
1480 vcpu->regs.tf_rbx = ebx;
1481 vcpu->regs.tf_rcx = ecx;
1482 vcpu->regs.tf_rdx = edx;
1485 static int vmx_handle_nmi_exception(struct vmx_vcpu *vcpu)
1490 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1493 printk("vmx (vcpu %p): got an exception\n", vcpu);
1494 printk("vmx (vcpu %p): pid %d\n", vcpu, vcpu->proc->pid);
1495 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) {
1499 printk("unhandled nmi, intr_info %x\n", intr_info);
1504 * vmx_launch - the main loop for a VMX Dune process
1505 * @conf: the launch configuration
1507 int vmx_launch(uint64_t rip, uint64_t rsp, uint64_t cr3)
1510 struct vmx_vcpu *vcpu;
1514 printd("RUNNING: %s: rip %p rsp %p cr3 %p \n",
1515 __func__, rip, rsp, cr3);
1516 /* TODO: dirty hack til we have VMM contexts */
1517 vcpu = current->vmm.guest_pcores[0];
1519 printk("Failed to get a CPU!\n");
1523 /* We need to prep the host's autoload region for our current core. Right
1524 * now, the only autoloaded MSR that varies at runtime (in this case per
1525 * core is the KERN_GS_BASE). */
1526 rdmsrl(MSR_KERNEL_GS_BASE, vcpu->msr_autoload.host[0].value);
1527 /* if cr3 is set, means 'set everything', else means 'start where you left off' */
1530 vmcs_writel(GUEST_RIP, rip);
1531 vmcs_writel(GUEST_RSP, rsp);
1532 vmcs_writel(GUEST_CR3, cr3);
1536 vcpu->ret_code = -1;
1542 // TODO: manage the fpu when we restart.
1544 // TODO: see if we need to exit before we go much further.
1547 ret = vmx_run_vcpu(vcpu);
1552 if (ret == EXIT_REASON_VMCALL) {
1553 if (current->vmm.flags & VMM_VMCALL_PRINTF) {
1554 uint8_t byte = vcpu->regs.tf_rdi;
1555 printd("System call\n");
1563 vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
1564 uint8_t byte = vcpu->regs.tf_rdi;
1565 printk("%p %c\n", byte, vcpu->regs.tf_rdi);
1567 printd("system call! WTF\n");
1569 } else if (ret == EXIT_REASON_CR_ACCESS) {
1570 show_cr_access(vmcs_read32(EXIT_QUALIFICATION));
1572 vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
1573 } else if (ret == EXIT_REASON_CPUID) {
1574 vmx_handle_cpuid(vcpu);
1576 vmcs_writel(GUEST_RIP, vcpu->regs.tf_rip + 2);
1578 } else if (ret == EXIT_REASON_EPT_VIOLATION) {
1579 if (vmx_handle_ept_violation(vcpu))
1580 vcpu->shutdown = SHUTDOWN_EPT_VIOLATION;
1581 } else if (ret == EXIT_REASON_EXCEPTION_NMI) {
1582 if (vmx_handle_nmi_exception(vcpu))
1583 vcpu->shutdown = SHUTDOWN_NMI_EXCEPTION;
1584 } else if (ret == EXIT_REASON_EXTERNAL_INTERRUPT) {
1585 printd("External interrupt\n");
1586 vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
1587 } else if (ret == EXIT_REASON_MSR_READ) {
1588 printd("msr read\n");
1590 vcpu->shutdown = msrio(vcpu, ret, vmcs_read32(EXIT_QUALIFICATION));
1592 } else if (ret == EXIT_REASON_MSR_WRITE) {
1593 printd("msr write\n");
1595 vcpu->shutdown = msrio(vcpu, ret, vmcs_read32(EXIT_QUALIFICATION));
1598 printk("unhandled exit: reason 0x%x, exit qualification 0x%x\n",
1599 ret, vmcs_read32(EXIT_QUALIFICATION));
1601 vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
1604 /* TODO: we can't just return and relaunch the VMCS, in case we blocked.
1605 * similar to how proc_restartcore/smp_idle only restart the pcpui
1606 * cur_ctx, we need to do the same, via the VMCS resume business. */
1612 vmcs_writel(GUEST_RIP, vcpu->regs.tf_rip + advance);
1617 printd("RETURN. ip %016lx sp %016lx\n",
1618 vcpu->regs.tf_rip, vcpu->regs.tf_rsp);
1619 // hexdump((void *)vcpu->regs.tf_rsp, 128 * 8);
1621 * Return both the reason for the shutdown and a status value.
1622 * The exit() and exit_group() system calls only need 8 bits for
1623 * the status but we allow 16 bits in case we might want to
1624 * return more information for one of the other shutdown reasons.
1626 ret = (vcpu->shutdown << 16) | (vcpu->ret_code & 0xffff);
1632 * __vmx_enable - low-level enable of VMX mode on the current CPU
1633 * @vmxon_buf: an opaque buffer for use as the VMXON region
1635 static int __vmx_enable(struct vmcs *vmxon_buf)
1637 uint64_t phys_addr = PADDR(vmxon_buf);
1638 uint64_t old, test_bits;
1640 if (rcr4() & X86_CR4_VMXE) {
1641 panic("Should never have this happen");
1645 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1647 test_bits = FEATURE_CONTROL_LOCKED;
1648 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1650 if (0) // tboot_enabled())
1651 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1653 if ((old & test_bits) != test_bits) {
1654 /* If it's locked, then trying to set it will cause a GPF.
1657 if (old & FEATURE_CONTROL_LOCKED) {
1658 printk("Dune: MSR_IA32_FEATURE_CONTROL is locked!\n");
1662 /* enable and lock */
1663 write_msr(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1665 lcr4(rcr4() | X86_CR4_VMXE);
1668 vpid_sync_vcpu_global(); /* good idea, even if we aren't using vpids */
1675 * vmx_enable - enables VMX mode on the current CPU
1676 * @unused: not used (required for on_each_cpu())
1678 * Sets up necessary state for enable (e.g. a scratchpad for VMXON.)
1680 static void vmx_enable(void)
1682 struct vmcs *vmxon_buf = currentcpu->vmxarea;
1685 ret = __vmx_enable(vmxon_buf);
1689 currentcpu->vmx_enabled = 1;
1690 // TODO: do we need this?
1691 store_gdt(¤tcpu->host_gdt);
1693 printk("VMX enabled on CPU %d\n", core_id());
1697 printk("Failed to enable VMX on core %d, err = %d\n", core_id(), ret);
1701 * vmx_disable - disables VMX mode on the current CPU
1703 static void vmx_disable(void *unused)
1705 if (currentcpu->vmx_enabled) {
1707 lcr4(rcr4() & ~X86_CR4_VMXE);
1708 currentcpu->vmx_enabled = 0;
1712 /* Probe the cpus to see which ones can do vmx.
1713 * Return -errno if it fails, and 1 if it succeeds.
1715 static bool probe_cpu_vmx(void)
1717 /* The best way to test this code is:
1718 * wrmsr -p <cpu> 0x3a 1
1719 * This will lock vmx off; then modprobe dune.
1720 * Frequently, however, systems have all 0x3a registers set to 5,
1721 * meaning testing is impossible, as vmx can not be disabled.
1722 * We have to simulate it being unavailable in most cases.
1723 * The 'test' variable provides an easy way to simulate
1724 * unavailability of vmx on some, none, or all cpus.
1726 if (!cpu_has_vmx()) {
1727 printk("Machine does not support VT-x\n");
1730 printk("Machine supports VT-x\n");
1735 static void setup_vmxarea(void)
1737 struct vmcs *vmxon_buf;
1738 printd("Set up vmxarea for cpu %d\n", core_id());
1739 vmxon_buf = __vmx_alloc_vmcs(core_id());
1741 printk("setup_vmxarea failed on node %d\n", core_id());
1744 currentcpu->vmxarea = vmxon_buf;
1747 static int ept_init(void)
1749 if (!cpu_has_vmx_ept()) {
1750 printk("VMX doesn't support EPT!\n");
1753 if (!cpu_has_vmx_eptp_writeback()) {
1754 printk("VMX EPT doesn't support WB memory!\n");
1757 if (!cpu_has_vmx_ept_4levels()) {
1758 printk("VMX EPT doesn't support 4 level walks!\n");
1761 switch (arch_max_jumbo_page_shift()) {
1763 if (!cpu_has_vmx_ept_1g_page()) {
1764 printk("VMX EPT doesn't support 1 GB pages!\n");
1769 if (!cpu_has_vmx_ept_2m_page()) {
1770 printk("VMX EPT doesn't support 2 MB pages!\n");
1775 printk("Unexpected jumbo page size %d\n",
1776 arch_max_jumbo_page_shift());
1779 if (!cpu_has_vmx_ept_ad_bits()) {
1780 printk("VMX EPT doesn't support accessed/dirty!\n");
1781 x86_ept_pte_fix_ups |= EPTE_A | EPTE_D;
1783 if (!cpu_has_vmx_invept() || !cpu_has_vmx_invept_global()) {
1784 printk("VMX EPT can't invalidate PTEs/TLBs!\n");
1792 * vmx_init sets up physical core data areas that are required to run a vm at all.
1793 * These data areas are not connected to a specific user process in any way. Instead,
1794 * they are in some sense externalizing what would other wise be a very large ball of
1795 * state that would be inside the CPU.
1797 int intel_vmm_init(void)
1801 if (! probe_cpu_vmx()) {
1805 setup_vmcs_config(&ret);
1808 printk("setup_vmcs_config failed: %d\n", ret);
1812 msr_bitmap = (unsigned long *)kpage_zalloc_addr();
1814 printk("Could not allocate msr_bitmap\n");
1817 /* FIXME: do we need APIC virtualization (flexpriority?) */
1819 memset(msr_bitmap, 0xff, PAGE_SIZE);
1820 /* These are the only MSRs that are not autoloaded and not intercepted */
1821 __vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE);
1822 __vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE);
1823 __vmx_disable_intercept_for_msr(msr_bitmap, MSR_EFER);
1825 if ((ret = ept_init())) {
1826 printk("EPT init failed, %d\n", ret);
1829 printk("VMX setup succeeded\n");
1833 int intel_vmm_pcpu_init(void)