Changes to RISC-V supervisor mode
[akaros.git] / kern / arch / riscv / trap.c
1 #include <arch/arch.h>
2 #include <assert.h>
3 #include <arch/trap.h>
4 #include <string.h>
5 #include <process.h>
6 #include <syscall.h>
7 #include <monitor.h>
8 #include <manager.h>
9 #include <stdio.h>
10 #include <smp.h>
11 #include <slab.h>
12 #include <mm.h>
13 #include <umem.h>
14 #include <pmap.h>
15
16 /* These are the stacks the kernel will load when it receives a trap from user
17  * space.  The deal is that they get set right away in entry.S, and can always
18  * be used for finding the top of the stack (from which you should subtract the
19  * sizeof the trapframe.  Note, we need to have a junk value in the array so
20  * that this is NOT part of the BSS.  If it is in the BSS, it will get 0'd in
21  * kernel_init(), which is after these values get set.
22  *
23  * TODO: if these end up becoming contended cache lines, move this to
24  * per_cpu_info. */
25 uintptr_t core_stacktops[MAX_NUM_CPUS] = {0xcafebabe, 0};
26
27 struct kmem_cache *kernel_msg_cache;
28 void kernel_msg_init(void)
29 {
30         kernel_msg_cache = kmem_cache_create("kernel_msgs",
31                            sizeof(struct kernel_message), HW_CACHE_ALIGN, 0, 0, 0);
32 }
33
34 spinlock_t kernel_message_buf_busy[MAX_NUM_CPUS] = {SPINLOCK_INITIALIZER};
35 kernel_message_t kernel_message_buf[MAX_NUM_CPUS];
36
37 /* This is mostly identical to x86's, minus the different send_ipi call. */
38 uint32_t send_kernel_message(uint32_t dst, amr_t pc, long arg0, long arg1,
39                              long arg2, int type)
40 {
41         kernel_message_t *k_msg;
42         assert(pc);
43         // note this will be freed on the destination core
44         k_msg = (kernel_message_t *CT(1))TC(kmem_cache_alloc(kernel_msg_cache, 0));
45         k_msg->srcid = core_id();
46         k_msg->pc = pc;
47         k_msg->arg0 = arg0;
48         k_msg->arg1 = arg1;
49         k_msg->arg2 = arg2;
50         switch (type) {
51                 case KMSG_IMMEDIATE:
52                         spin_lock_irqsave(&per_cpu_info[dst].immed_amsg_lock);
53                         STAILQ_INSERT_TAIL(&per_cpu_info[dst].immed_amsgs, k_msg, link);
54                         spin_unlock_irqsave(&per_cpu_info[dst].immed_amsg_lock);
55                         break;
56                 case KMSG_ROUTINE:
57                         spin_lock_irqsave(&per_cpu_info[dst].routine_amsg_lock);
58                         STAILQ_INSERT_TAIL(&per_cpu_info[dst].routine_amsgs, k_msg, link);
59                         spin_unlock_irqsave(&per_cpu_info[dst].routine_amsg_lock);
60                         break;
61                 default:
62                         panic("Unknown type of kernel message!");
63         }
64         /* if we're sending a routine message locally, we don't want/need an IPI */
65         if ((dst != k_msg->srcid) || (type == KMSG_IMMEDIATE))
66                 send_ipi(dst);
67         return 0;
68 }
69
70 void
71 advance_pc(trapframe_t* state)
72 {
73         state->epc += 4;
74 }
75
76 /* Set stacktop for the current core to be the stack the kernel will start on
77  * when trapping/interrupting from userspace */
78 void set_stack_top(uintptr_t stacktop)
79 {
80         core_stacktops[core_id()] = stacktop;
81 }
82
83 /* Note the assertion assumes we are in the top page of the stack. */
84 uintptr_t get_stack_top(void)
85 {
86         register uintptr_t sp asm ("sp");
87         uintptr_t stacktop = core_stacktops[core_id()];
88         assert(ROUNDUP(sp, PGSIZE) == stacktop);
89         return stacktop;
90 }
91
92 void
93 idt_init(void)
94 {
95 }
96
97 void
98 sysenter_init(void)
99 {
100 }
101
102 /* Helper.  For now, this copies out the TF to pcpui, and sets cur_tf to point
103  * to it. */
104 static void
105 set_current_tf(struct per_cpu_info *pcpui, struct trapframe *tf)
106 {
107         if (irq_is_enabled())
108                 warn("Turn off IRQs until cur_tf is set!");
109         assert(!pcpui->cur_tf);
110         pcpui->actual_tf = *tf;
111         pcpui->cur_tf = &pcpui->actual_tf;
112 }
113
114 static int
115 format_trapframe(trapframe_t *tf, char* buf, int bufsz)
116 {
117         // slightly hackish way to read out the instruction that faulted.
118         // not guaranteed to be right 100% of the time
119         uint32_t insn;
120         if(!(current && !memcpy_from_user(current,&insn,(void*)tf->epc,4)))
121                 insn = -1;
122
123         int len = snprintf(buf,bufsz,"TRAP frame at %p on core %d\n",
124                            tf, core_id());
125         static const char* regnames[] = {
126           "z ", "ra", "v0", "v1", "a0", "a1", "a2", "a3",
127           "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
128           "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3",
129           "s4", "s5", "s6", "s7", "s8", "fp", "sp", "tp"
130         };
131         
132         tf->gpr[0] = 0;
133         
134         for(int i = 0; i < 32; i+=4)
135         {
136                 for(int j = 0; j < 4; j++)
137                         len += snprintf(buf+len, bufsz-len,
138                                         "%s %016lx%c", regnames[i+j], tf->gpr[i+j], 
139                                         j < 3 ? ' ' : '\n');
140         }
141         len += snprintf(buf+len, bufsz-len,
142                         "sr %016lx pc %016lx va %016lx insn       %008x\n", tf->sr, tf->epc,
143                         tf->badvaddr, (uint32_t)tf->insn);
144
145         buf[bufsz-1] = 0;
146         return len;
147 }
148
149 void
150 print_trapframe(trapframe_t* tf)
151 {
152         char buf[1024];
153         int len = format_trapframe(tf,buf,sizeof(buf));
154         cputbuf(buf,len);
155 }
156
157 /* Helper function.  Returns 0 if the list was empty. */
158 static kernel_message_t *get_next_amsg(struct kernel_msg_list *list_head,
159                                        spinlock_t *list_lock)
160 {
161         kernel_message_t *k_msg;
162         spin_lock_irqsave(list_lock);
163         k_msg = STAILQ_FIRST(list_head);
164         if (k_msg)
165                 STAILQ_REMOVE_HEAD(list_head, link);
166         spin_unlock_irqsave(list_lock);
167         return k_msg;
168 }
169
170 /* Mostly the same as x86's implementation.  Keep them in sync.  This assumes
171  * you can send yourself an IPI, and that IPIs can get squashed like on x86. */
172 static void
173 handle_ipi(trapframe_t* tf)
174 {
175         if (!in_kernel(tf))
176                 set_current_tf(&per_cpu_info[core_id()], tf);
177         else if((void*)tf->epc == &cpu_halt) // break out of the cpu_halt loop
178                 advance_pc(tf);
179         
180         clear_ipi();
181
182         per_cpu_info_t *myinfo = &per_cpu_info[core_id()];
183         kernel_message_t msg_cp, *k_msg;
184
185         while (1) { // will break out when there are no more messages
186                 /* Try to get an immediate message.  Exec and free it. */
187                 k_msg = get_next_amsg(&myinfo->immed_amsgs, &myinfo->immed_amsg_lock);
188                 if (k_msg) {
189                         assert(k_msg->pc);
190                         k_msg->pc(tf, k_msg->srcid, k_msg->arg0, k_msg->arg1, k_msg->arg2);
191                         kmem_cache_free(kernel_msg_cache, (void*)k_msg);
192                 } else { // no immediate, might be a routine
193                         if (in_kernel(tf))
194                                 return; // don't execute routine msgs if we were in the kernel
195                         k_msg = get_next_amsg(&myinfo->routine_amsgs,
196                                               &myinfo->routine_amsg_lock);
197                         if (!k_msg) // no routines either
198                                 return;
199                         /* copy in, and then free, in case we don't return */
200                         msg_cp = *k_msg;
201                         kmem_cache_free(kernel_msg_cache, (void*)k_msg);
202                         /* make sure an IPI is pending if we have more work */
203                         /* techincally, we don't need to lock when checking */
204                         if (!STAILQ_EMPTY(&myinfo->routine_amsgs))
205                                 send_ipi(core_id());
206                         /* Execute the kernel message */
207                         assert(msg_cp.pc);
208                         msg_cp.pc(tf, msg_cp.srcid, msg_cp.arg0, msg_cp.arg1, msg_cp.arg2);
209                 }
210         }
211 }
212
213 /* Same as in x86.  Might be diff in the future if there is no way to check for
214  * immediate messages or there is the ability to selectively mask IPI vectors.*/
215 void
216 process_routine_kmsg(struct trapframe *tf)
217 {
218         per_cpu_info_t *myinfo = &per_cpu_info[core_id()];
219         kernel_message_t msg_cp, *k_msg;
220         int8_t irq_state = 0;
221
222         disable_irqsave(&irq_state);
223         /* If we were told what our TF was, use that.  o/w, go with current_tf. */
224         tf = tf ? tf : current_tf;
225         while (1) {
226                 /* normally, we want ints disabled, so we don't have an empty self-ipi
227                  * for every routine message. (imagine a long list of routines).  But we
228                  * do want immediates to run ahead of routines.  This enabling should
229                  * work (might not in some shitty VMs).  Also note we can receive an
230                  * extra self-ipi for routine messages before we turn off irqs again.
231                  * Not a big deal, since we will process it right away. */
232                 if (!STAILQ_EMPTY(&myinfo->immed_amsgs)) {
233                         enable_irq();
234                         cpu_relax();
235                         disable_irq();
236                 }
237                 k_msg = get_next_amsg(&myinfo->routine_amsgs,
238                                       &myinfo->routine_amsg_lock);
239                 if (!k_msg) {
240                         enable_irqsave(&irq_state);
241                         return;
242                 }
243                 /* copy in, and then free, in case we don't return */
244                 msg_cp = *k_msg;
245                 kmem_cache_free(kernel_msg_cache, (void*)k_msg);
246                 /* make sure an IPI is pending if we have more work */
247                 if (!STAILQ_EMPTY(&myinfo->routine_amsgs))
248                         send_ipi(core_id());
249                 /* Execute the kernel message */
250                 assert(msg_cp.pc);
251                 msg_cp.pc(tf, msg_cp.srcid, msg_cp.arg0, msg_cp.arg1, msg_cp.arg2);
252         }
253 }
254
255 static void
256 unhandled_trap(trapframe_t* state, const char* name)
257 {
258         static spinlock_t screwup_lock = SPINLOCK_INITIALIZER;
259         spin_lock(&screwup_lock);
260
261         if(in_kernel(state))
262         {
263                 print_trapframe(state);
264                 panic("Unhandled trap in kernel!\nTrap type: %s", name);
265         }
266         else
267         {
268                 char tf_buf[1024];
269                 format_trapframe(state, tf_buf, sizeof(tf_buf));
270
271                 warn("Unhandled trap in user!\nTrap type: %s\n%s", name, tf_buf);
272                 backtrace();
273                 spin_unlock(&screwup_lock);
274
275                 assert(current);
276                 proc_destroy(current);
277         }
278 }
279
280 static void
281 handle_timer_interrupt(trapframe_t* tf)
282 {
283         if (!in_kernel(tf))
284                 set_current_tf(&per_cpu_info[core_id()], tf);
285         else if((void*)tf->epc == &cpu_halt) // break out of the cpu_halt loop
286                 advance_pc(tf);
287         
288         timer_interrupt(tf, NULL);
289 }
290
291 static void
292 handle_misaligned_fetch(trapframe_t* state)
293 {
294         unhandled_trap(state, "Misaligned Fetch");
295 }
296
297 static void
298 handle_misaligned_load(trapframe_t* state)
299 {
300         unhandled_trap(state, "Misaligned Load");
301 }
302
303 static void
304 handle_misaligned_store(trapframe_t* state)
305 {
306         unhandled_trap(state, "Misaligned Store");
307 }
308
309 static void
310 handle_fault_fetch(trapframe_t* state)
311 {
312         if(in_kernel(state))
313         {
314                 print_trapframe(state);
315                 panic("Instruction Page Fault in the Kernel at %p!", state->badvaddr);
316         }
317         
318         if(handle_page_fault(current, state->badvaddr, PROT_EXEC))
319                 unhandled_trap(state, "Instruction Page Fault");
320 }
321
322 static void
323 handle_fault_load(trapframe_t* state)
324 {
325         if(in_kernel(state))
326         {
327                 print_trapframe(state);
328                 panic("Load Page Fault in the Kernel at %p!", state->badvaddr);
329         }
330         
331         if(handle_page_fault(current, state->badvaddr, PROT_READ))
332                 unhandled_trap(state, "Load Page Fault");
333 }
334
335 static void
336 handle_fault_store(trapframe_t* state)
337 {
338         if(in_kernel(state))
339         {
340                 print_trapframe(state);
341                 panic("Store Page Fault in the Kernel at %p!", state->badvaddr);
342         }
343         
344         if(handle_page_fault(current, state->badvaddr, PROT_WRITE))
345                 unhandled_trap(state, "Store Page Fault");
346 }
347
348 static void
349 handle_illegal_instruction(trapframe_t* state)
350 {
351         unhandled_trap(state, "Illegal Instruction");
352 }
353
354 static void
355 handle_fp_disabled(trapframe_t* tf)
356 {
357         if(in_kernel(tf))
358                 panic("kernel executed an FP instruction!");
359
360         tf->sr |= SR_EF;
361         env_pop_tf(tf); /* We didn't save our TF, so don't use proc_restartcore */
362 }
363
364 static void
365 handle_syscall(trapframe_t* state)
366 {
367         uintptr_t a0 = state->gpr[4];
368         uintptr_t a1 = state->gpr[5];
369
370         advance_pc(state);
371         set_current_tf(&per_cpu_info[core_id()], state);
372         enable_irq();
373         prep_syscalls(current, (struct syscall*)a0, a1);
374 }
375
376 static void
377 handle_breakpoint(trapframe_t* state)
378 {
379         advance_pc(state);
380         monitor(state);
381 }
382
383 void
384 handle_trap(trapframe_t* tf)
385 {
386         static void (*const trap_handlers[NUM_CAUSES])(trapframe_t*) = {
387           [CAUSE_MISALIGNED_FETCH] = handle_misaligned_fetch,
388           [CAUSE_FAULT_FETCH] = handle_fault_fetch,
389           [CAUSE_ILLEGAL_INSTRUCTION] = handle_illegal_instruction,
390           [CAUSE_PRIVILEGED_INSTRUCTION] = handle_illegal_instruction,
391           [CAUSE_FP_DISABLED] = handle_fp_disabled,
392           [CAUSE_SYSCALL] = handle_syscall,
393           [CAUSE_BREAKPOINT] = handle_breakpoint,
394           [CAUSE_MISALIGNED_LOAD] = handle_misaligned_load,
395           [CAUSE_MISALIGNED_STORE] = handle_misaligned_store,
396           [CAUSE_FAULT_LOAD] = handle_fault_load,
397           [CAUSE_FAULT_STORE] = handle_fault_store,
398           [CAUSE_IRQ0 + IPI_IRQ] = handle_ipi,
399           [CAUSE_IRQ0 + TIMER_IRQ] = handle_timer_interrupt,
400         };
401         
402         assert(tf->cause < NUM_CAUSES && trap_handlers[tf->cause]);
403         trap_handlers[tf->cause](tf);
404         
405         /* Return to the current process, which should be runnable.  If we're the
406          * kernel, we should just return naturally.  Note that current and tf need
407          * to still be okay (might not be after blocking) */
408         if (in_kernel(tf))
409                 env_pop_tf(tf);
410         else
411                 proc_restartcore();
412 }
413
414 /* We don't have NMIs now. */
415 void send_nmi(uint32_t os_coreid)
416 {
417 }